
www.manaraa.com

University of Connecticut

Abstract

Efficient and Adaptively Secure Cryptographic Primitives
—Designing for Composability

Hong-Sheng Zhou
2010

Major Advisor:
Prof. Aggelos Kiayias

Department of Computer Science & Engineering

We study efficient protocol constructions against adaptive corruption in the universal

composition framework. For standard cryptographic tasks, we propose a new framework

to design efficiently two-party secure function evaluation protocols, and then apply it to

oblivious transfer and obtain the first practical such constructions. Regarding reactive

cryptographic tasks, we present a framework for designing blind signatures, and construct

the first practical protocols for this task.

www.manaraa.com

www.manaraa.com

Efficient and Adaptively Secure Cryptographic Primitives
—Designing for Composability

Hong-Sheng Zhou

B.E., Nanjing University of Posts & Telecommunications, 1998

M.E., Shanghai Jiaotong University, 2004

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Connecticut

2010

www.manaraa.com

UMl Number: 3420184

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMl 3420184
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

APPROVAL PAGE

Doctor of Philosophy Dissertation

Efficient and Adaptively Secure Cryptographic Primitives - Designing for Composability

Presented by

Hong-Sheng Zhou, B.E., M.E.

Major Advisor:

Prof. Aggelos Kiayias

Associate Advisors

_x€4^
rssiu^W

Prof. Alexander A. Shvartsman

University of Connecticut

2010

www.manaraa.com

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Aggelos Kiayias for giving me the

opportunity to learn cryptography and for contributing the most to my personal develop­

ment as a researcher. During the years at UConn, Aggelos invested huge amount of energy

to teach me the basics, and to reshape my independent thinking abilities. He shared with

me many of his brilliant ideas, but more importantly, he taught me how to identify inter­

esting problems and to provide the solutions, and how to pursue the true nature of things

and the beauty. Guided by him, I found my own approach to cryptography research. Agge­

los is the greatest person to work with; he has the amazing capability to understand my

fuzzy intuitions (to be honest, sometime even I did not know what I was talking about but

he could extract something meaningful), and he is always available to answer my ques­

tions. It was his persistent encouragement that motivated me through the ups and downs

during my PhD studies. I will always miss the days under his guidance, and be indebted

to him for all his help and for the greatest example he has set to me.

I would like to express my gratitude to the members of my dissertation committee, Juan

Garay, Alex Russell, Jerry Shi, and Alex Shvartsman, for all their time and support, and for

providing me many helpful technical suggestions. The technical parts in the dissertation

are based on joint work with Juan Garay, Daniel Wichs, and my advisor, and I thank them

for allowing me to use it here.

i

www.manaraa.com

My special thanks go to Alex Russell for teaching me the great course Computational

Complexity which supplied me a solid background for cryptography research, for provid­

ing me many individual and fun meetings when Aggelos was in the army or on sabbatical,

and for running interesting reading groups together. Alex is always willing to teach me

math or theory in general, and my interactions with him have significantly influenced my

view on research. Thanks, Alex!

My special thanks go to Juan Garay. At TCC'06, Aggelos introduced me to Juan and we

started to work together one year later. Juan together with Aggelos have given me critical

help in my PhD studies. He threw at me several interesting research topics and provided

me with many technical discussions, mixed with his rich knowledge about beers and coffee

and colorful stories in crypto community — our meetings were never boring. In addition,

I thank him for an interesting summer at Bell-Labs.

I thank Moti Yung for his collaboration, suggestions, encouragement, and help. I thank

Daniel Wichs for sharing me his knowledge, broadening my view of cryptography re­

search, and his collaboration.

I thank Ran Canetti, Stas Jarecki, Jon Katz, Vlad Kolesnikov, Jesper Nielsen, Manoj

Prabhakaran, Abhi Shelat, and many researchers in the New York Metro area for many

interesting and insightful conversations.

I thank all the members and visitors in our Crypto-DRM Lab, Sotiris Kentros, Michael

Korman, Justin Neumann, Murat Osmanoglu, Serdar Pehlivanoglu, Yona Raekow, Qiang

Tang, David Walluck, and Lei Fan, Maged Ibrahim, for giving me their help, and for stu-

ii

www.manaraa.com

dents in the computer science department for maintaining great research atmosphere. I

thank Charles Ju, Baikang Pei, Fan Zhang, Haimin Zhang, and many friends here for mak­

ing me live at Storrs better.

Finally, I thank my mother, my bother and my sister and the extended family back in

China, and my wife for their endless support and love.

My PhD studies were supported by Aggelos' NSF grants #0447808, #0831304, and #0831306.

m

www.manaraa.com

DEDICATION

to my dear wife

IV

www.manaraa.com

TABLE OF CONTENTS

Page

Chapter 1: Introduction 1

Chapter 2: Preliminaries 5

2.1 Notations 5

2.2 The Universal Composability Framework 5

2.3 Other Frameworks Related to UC 8

2.4 Typical Setup: Common Reference String 10

2.5 Digital Signatures 10

2.6 Okamoto Signature 12

2.7 Commitments 14

2.8 Non-Interactive Zero-Knowledge 17

2.9 Interactive Zero-Knowledge Proofs 19

2.10 Sigma Protocols 21

2.11 Public Key Encryption 24

Chapter 3: Oblivious Transfer 27

3.1 Introduction 27

3.2 Building Block: Somewhat Non-Committing Encryption 34

3.3 Building Block: Semi-Adaptively Secure Protocols 44

3.4 Compiler: Adaptively Secure Two-Party SFE 46

3.5 PVW Compiler for Statically Secure OT 47

3.6 Semi-Adaptively Secure OT 53

3.7 QR-based Concrete Construction for Bit OT 57

3.8 DDH-based Concrete Construction for Bit and String OT 62

3.9 Delayed Proofs 69

Chapter 4: Blind Signatures 87

4.1 Introduction 87

v

www.manaraa.com

4.2 Blind Signature Schemes 93

4.3 Building Block: Lite Blind Signatures 97

4.4 Building Block: Single-Verifier/Prover Zero-Knowledge 107

4.5 Blind Signature Functionality I l l

4.6 Generic Construction for Adaptively Secure Blind Signatures 121

4.7 Leaking ZK and its Application to Blind Signatures 131

4.8 Concrete Construction from Okamoto Signatures 136

Bibliography 144

VI

www.manaraa.com

1

C h a p t e r 1

I N T R O D U C T I O N

Cryptography has been with us for many years, in its traditional role of protecting

information transmission via encryption and authentication. However, with the more re­

cent advancement of information and communication techniques and their deployment

becoming ubiquitous and common-place, cryptography has broadened its scope with ap­

plications such as electronic voting, privacy preserving data-mining, and digital rights

management, in conjunction to its role as a critical enabler of new ways of interaction.

At the same time, the environments where those applications run, such as the Internet,

are much more complex than yesteryear's networks for which secure communication pro­

tocols were designed and analyzed, resulting not only in new vulnerabilities, but also in

more unpredictable situations and attacks. Protocols secure in the traditional stand-alone

setting are unlikely to be secure in the Internet setting. The adversaries can corrupt par­

ties at any moment during protocol execution. The corrupted parties can deviate from

protocol specifications and share information among different protocols. The adversaries

can delay the communication between parties, eavesdrop on the communication channel,

and/or even inject malicious messages.

To date, universal composition security [CanOl] is one of the most advanced notions

for defining security in cryptography. Protocols satisfying UC security are secure within

www.manaraa.com

2

any environment. However, while Canetti's UC framework provides a feasible way to de­

sign multi-party computation (MPC) protocols in the Internet setting, it is still elusive to

give efficient constructions. The main goal of this study is to design efficient and practi­

cal protocols in complex environment. We investigate two important privacy primitives,

oblivious transfer and blind signatures, under more realistic attacks. Along the way, we

identify several key techniques could be useful in efficient protocol design in general.

Protocol design of blind signature and oblivious transfer. Blind signature is a very use­

ful privacy primitive, which allows a signer to interactively sign messages for multiple

users such that the messages are not revealed to the signer. Since the initial introduction of

the primitive [Cha82], it has been intensively used to design electronic cash schemes, elec­

tronic voting schemes and anonymous credential systems. In Section 4, we first defined

the protocol specification (also called functionality) for blind signature. To implement

the functionality efficiently, we disassembled the traditional security properties, "trimmed

the fat", and then abstracted a lightweight core. We further assembled the lightweight core

with tailored and highly efficient zero-knowledge proofs to achieve UC security. Our blind

signature protocols are the first practical and adaptively secure constructions. Note that

before our result there had not been practical blind signatures in the UC setting. These

results are joint work with Aggelos Kiayias, and appeared in [KZ08, KZ07].

Oblivious transfer is a fundamental primitive in cryptography as the basis of a huge

class of two-party and multi-party cryptographic tasks. OT allows a receiver to obtain

exactly one of two (or more) messages from a sender where the receiver remains oblivious

to the other message(s), and the sender is oblivious to which value was received. The OT

www.manaraa.com

3

protocols presented in Section 3 are the first practical and adaptively secure constructions.

These results are joint work with Juan Garay and Daniel Wichs, and appeared in [GWZ09].

Adaptive security and efficiency. Currently many protocols are secure only against static

adversaries, who corrupt parties only at the very beginning of protocol executions. How­

ever in a realistic setting, protocols must be designed to defend against adaptive adver­

saries, who have the power to corrupt parties at any moment during a protocol execution.

For most tasks, adaptive security is significantly harder to achieve, and the corresponding

constructions might be much less efficient. I am interested in designing adaptively secure

protocols with higher efficiency for practical applications.

Generally an adaptively secure high-level protocol requires adaptively secure low-level

building blocks. In [KZ07], we identified a family of protocols which are adaptively secure

by using a zero-knowledge proof as a building block. Furthermore, the protocols are still

adaptively secure even using a much weaker primitive called leaking zero-knowledge proof.

The leaking zero-knowledge proof, unlike the zero-knowledge proof, can be realized much

more efficiently. In addition, this technique was used in [KZ08] to make our blind signa­

ture constructions more efficient.

In [GWZ09], we made significant progresses in adaptive security. We introduced a new

notion called semi-adaptive security which is stronger than static security but weaker than

fully adaptive security. We then gave a simple, generic protocol compiler which transforms

any semi-adaptively secure protocol into a fully adaptively secure one. The compilation ef­

fectively decomposes the problem of adaptive security into two simpler ones: the problem

of semi-adaptive security and the problem of realizing a weaker variant of secure chan-

www.manaraa.com

4

nels. We solved the latter problem by means of a new primitive that we call somewhat non-

committing encryption, resulting in significant efficiency improvements over the standard

method for realizing secure channels using fully non-committing encryption. The power

of our methodology is demonstrated by transforming the recent efficient statically-secure

oblivious transfer protocols [PVW08] to adaptively-secure ones.

Organization. In Chapter 2, we give a brief introduction of the universal composition

framework, and the basic cryptographic primitives used in our efficient protocol design. In

Chapter 3, we focus on the design of efficient oblivious transfer including two main parts:

we first propose a framework for efficient two-party function evaluation construction, and

then apply this framework to oblivious transfer and give concrete constructions under

number theoretical assumptions; part of this chapter appears in CRYPTO'09. In Chapter 4,

we propose a framework for efficient blind signature construction, and give concrete con­

structions under number theoretical assumptions; part of this chapter appears in TCC'08

and ICALP'07.

www.manaraa.com

5

C h a p t e r 2

PRELIMINARIES

2.1 Notations

All algorithms are in polynomial-time in the security parameter A. By ((a,b,c),rj) <— A(x)

we mean that algorithm A, with input x, outputs values a, b, c, where r\ is the random­

ness. If A is deterministic, rj will be ignored, i.e., (a,b,c) <— A(x). By ({a,b),rj;c,Q <—

[A(x);B(y)]]LR, we denote an execution between two interactive Turing machines A and B,

where the left machine A on input x generates output a, b by using randomness rj, while

the right machine B on inputs y generates outputs c by randomness £. If only left side

of the output is of concern, we write it as {{a,b),r\) <— |JA(x);B(y)]]L, and similarly for the

right side. We use « to denote computational indistinguishability, and ~ for statistical

indistinguishability.

2.2 The Universal Composability Framework

The Universal Composability (UC) framework proposed by Canetti [CanOl, Can05], cul­

minating a long sequence of simulation-based security definitions (cf. [Yao82, GMW87,

GL90, MR91, Bea91, CanOO, HMOO, DM00, PW00]; see also [PW01, BPW07, DKM+04,

KDMR08, PS04, Kus06, CDPW07, LPV09] for alternative/extended frameworks), allows

for arguing the security of cryptographic protocols in arbitrary settings where executions

can be concurrent and adversarially interleaved. The framework is particularly attrac-

www.manaraa.com

6

tive for the design of secure systems as it supports modularity, provides non-malleability

across sessions [DDNOO], and preserves security under composition.

In this framework one first defines an "ideal functionality" of a protocol, and then

proves that a particular implementation of this protocol operating in a given computa­

tional environment securely realizes this ideal functionality. The basic entities involved

are n players P1,...,Pn, an adversary A, and an environment Z. The real execution of a

protocol n, run by the players in the presence of A and an environment machine Z, with

input z, is modeled as a sequence of activations of the entities. The environment Z is ac­

tivated first, generating in particular the inputs to the other players. Then the protocol

proceeds by having A exchange messages with the players and the environment. Finally,

the environment outputs one bit, which is the output of the protocol. Please refer to Fig­

ure 2.1 for a high-level pictorial description.

7T I " 1 71 A
•^ppssp

7T =

-C-

Figure 2.1: The real world. Here protocol parties are running n. The adversary A observes

protocol communication between parties (denoted by double stroke arrow), and it might

corrupt some parties. For example here the third party is corrupt.

The security of the protocols is defined by comparing the real execution of the protocol

www.manaraa.com

7

T

Figure 2.2: The ideal world. Here dummy parties (denoted by dotted boxes) directly for­

ward the inputs /outputs between environment Z and functionality T. The ideal adversary

S might corrupt some parties, and on behalf these parties send inputs to or receive out­

puts from T'. In addition S might generate simulated protocol communication (denoted

by double dotted stroke arrow), and delay the outputs from T to the dummy parties.

to an ideal process in which an additional entity, the ideal functionality T, is introduced;

essentially, T is an incorruptible trusted party that is programmed to produce the desired

functionality of the given task. The players are replaced by dummy players, who do not

communicate with each other; whenever a dummy player is activated, it forwards its input

to T'. Let S denote the adversary in this idealized execution. As in the real-life execution,

the output of the protocol execution is the one-bit output of Z. Please refer to Figure 2.2

for a pictorial description of the ideal execution.

Now a protocol n securely realizes an ideal functionality T if for any real-life adver­

sary A there exists an ideal-execution adversary <S such that no environment Z, on any

www.manaraa.com

input, can tell with non-negligible probability whether it is interacting with A and play­

ers running n in the real-life execution, or with S and T in the ideal execution. More

precisely, if the two binary distribution ensembles, REAL^ _4 z and IDEALjr.s^g, describ­

ing Z's output after interacting with adversary A and players running protocol n (resp.,

adversary <S and ideal functionality T), are computationally indistinguishable (denoted

REALJJ _4iZ ~ IDEALjp s z). For further details on the UC framework refer to [Can05].

(LEAKACTION, X') (lNFLACTION,y')

(ACTION, a;) (ACTIONRETURN, y)

Figure 2.3: An ideal functionality template. Here a single action ACTION is considered.

In this thesis, several ideal functionalities will be introduced. We adapt the presenta­

tion style from [GKZ10]. In Figure 2.3, we present a pictorial version of a functionality

where a single action is considered. For reactive tasks, multiple actions will be introduced.

The functionality T (denoted by elliptic circle) operates based on some internal instruc­

tions or codes. See examples shortly.

2.3 Other Frameworks Related to UC

In all previously mentioned simulation-based security frameworks, the activations are

scheduled sequentially, in the sense that, in a system of processes executing in parallel,

only one process is allowed to be activated at any point, and when the active process

www.manaraa.com

9

produces a message, the intended recipient is the next active one. Here, if the chain of

activation is broken, then a designated master process will be triggered. The underlying

computational entities include probabilistic interactive Turing machine [CanOl, Kiis06],

probabilistic I /O automata [PW01, BPW07] and the sequential probabilistic process cal­

culus [DKM+04, KDMR08].

However, in the physical world of distributed systems, computations are carried out

in many different places concurrently. In the above frameworks with sequential activa­

tions, this issue is resolved by providing "pseudo-concurrency" to approximate the "true

concurrency".

In the literature, there are frameworks that represent concurrency aspects of distributed

systems directly by considering non-deterministic scheduling and then quantifying over

all possible schedules, including the probabilistic polynomial-time process calculus of

[LMMS98, MMS03, DKM+04, MRST06] by using non-sequential scheduling with state-

dependent functions (or Markov chains).

Recently Canetti et al. [CCK+05, CCK+07a, CCK+08, CCK+07b] extend the Probabilis­

tic I /O Automata (PIOA) of Lynch, Segala and Vaandrager [LSV03] to a security frame­

work for analyzing cryptographic protocols along the lines of the UC framework. Here

a special mechanism, called the task schedule, is introduced for curbing the power of

non-sequential scheduling. The resulting framework represents the concurrent nature of

distributed systems in a direct way. It also allows for analyzing partially-specified proto­

cols, and allows some scheduling choices to be determined non-deterministically during

run-time. Canetti et al. [CCLP07] also show that the security models with sequential

www.manaraa.com

10

scheduling are incomparable with the ones with non-sequential scheduling; please refer

to their paper for interesting separation examples.

2.4 Typical Setup: Common Reference String

As was observed in [CKL03], most functionalities cannot be realized in the UC framework

without some setup. One common form of setup is the common reference string (CRS).

We model a CRS as an ideal functionality ^ Q . S which is shown in Figure 2.4. Please refer

to [Can07] for an excellent survey about variant trust setups.

•TCRS

each

, parameterized by

input or message,

otherwise.

CRS generation:

a distribution D

the functionality

- On input (CRS, P, sid) from P €

and record it

— On receiving

Send (L E A K C R S ,

Funct ional i ty J~rT>c

interacts with a set V of

verifies that sid = (P,sid'

V, if there is no value crs

P,sid,crs) to S.

(I N F L C R S , P,sid) from S, send (CRSRETURN

parties and adversary S. For

) for some sid', and ignores it

recorded then choose crs

P, sid, crs) to P.

$

Figure 2.4: The common reference string ideal functionality, .T^RS-

2.5 Digital Signatures

Digital signature schemes allow a distinguished party (i.e., the signer), who has some secret

information (i.e., secret key), to generate tag strings (i.e., signatures) for plaintexts, so that

all parties (i.e., the verifiers) can make sure that the signatures were generated by the

www.manaraa.com

11

signer but not someone else. Digital signature schemes were first proposed by Diffie and

Hellman [DH76], and basic security requirements were formally denned by Goldwasser,

Micali and Rivest [GMR88]. Ideal functionality of digital signatures was first studied in

[CanOl], and later several revisions were made. The formulation presented in Figure 2.5

is from [Can05].

Functionality JSIQ

-?5IG interacts with adversary S, and a distinguished signer S and a set V of verifiers V. For each

input or message, the functionality verifies that sid = (S,sid') for some sid', and ignores it otherwise.

Key generation:

— Upon receiving (KEYGEN,S,sid) from party S, forward (LEAKKEYGEN, S,sid) to S.

— Upon receiving (INFLKEYGEN, S,sid, (s, v)) from the adversary S, record (s, v) in history^

and output (KEYGENRETURN,S,sid,w) to party S, where s is a probabilistic poly-time

algorithm, and v is a deterministic poly-time algorithm.

Signature generation:

— Upon receiving (SIGN,S,sid,m) from party S, compute (ff,C) <— s(m) and verify that

v(m,a) = 1. If so, then output (SIGNRETURN,S,sid,a) to party S, and record (m,a,C)

into his toryj . Else, halt.

S ignature verification:

— Upon receiving (VERIFY,V ,sid,(m,a,v')) from party V € V, do: if v' = v, the signer

S is not corrupted, v{m,a) - 1, and m is not recorded, then halt. Else, ou tpu t

(VERIFYRETURN, V,sid, v'(m,<r)) to party V.

Corruption:

— Upon receiving (CORRUPT,/,sid) from S, return (CORRUPTRETURN,/,sid, history^) to S.

Figure 2.5: Signature functionality ^SIG-

www.manaraa.com

12

Definition 2.5.1 (Secure Signature Schemes [GMR88]). A signature scheme E(SIG) = SIG.{KG,

SG, Vrf} is secure if the following properties hold:

— COMPLETENESS: For all PPT A,

Pr (v*,sJfc) <- KG(lA);m <- A{vk);(a,C) *- SG(vk,sk,m);(p «- Vrf (vk,m, a) : (p = 0 0.

— CONSISTENCY: For any PPT A,

Pr (vk,m,a) <— A(l);<pi <— Vrf(vk,m,a);(p2 <— Vrf(vk,m,o) : (pi * cp2
0.

UNFORGEABILITY: (Existential Unforgeability against Chosen Message Attacks (EU-CMA))

For any PPT forger A,

Pr
(vk,sk) <- KG(lA);(m,cr)«- Asc^vk^k'^{vk);<p «- Vrf(^,m,cr)

: (̂) = 1 and ^4 never submitted nz to the S\gn(vk,sk, •) oracle

0.

D

Remark 2.5.2. Consistency was first explicitly investigated by Canetti [Can04]. Here we

adopt the corrected version of consistency by Garay et al [GKZ10].

Based on a digital signature scheme E(SIG), we can obtain the corresponding protocol

7i£(SiQ as presented in Figure 2.6. In [Can05], Canetti proves the following theorem.

Theorem 2.5.3. E(SIG) is GMR-secure <=> n-£(s\G) securely realizes J^IG-

2.6 Okamoto Signature

In our construction, we will use the signature recently proposed in section 5 in [Oka06],

which is based on bilinear groups, and is EU-CMA secure under <j-2SDH assumption.

www.manaraa.com

13

Protocol 7i£(siG)

Key generation: When party S is invoked with (KEYGEN.sid) by Z, it verifies that sid = (S,sid') for

some sid'; If not, it ignores the input; Otherwise, it runs (vk,sk) <— KC(1), stores (vk,sk),

defines the verification algorithm v := \lrf(vk, •, •), and outputs (KEYGENRETURN,sid, v) to Z.

Signature generation: When party S is invoked with (SIGN,sid,m) by Z where sid = (S,sid'), it

computes (cr,C) *— s(m) and outputs (SIGNRETURN,sid,o) to Z.

Signature verification: When par ty V is invoked with (VERIFY, sid, m, a, v') by Z where sid =

(S,sid'), it outputs (VERiFYRETURN,s;<i,v'(m, a)) to Z.

Corruption: When par ty] is invoked with (CORRUPT,sid,]) by Z, it returns

(CORRUPTRETURN,sid, history^) to Z.

Figure 2.6: Signature protocol TI^SIG)-

Bilinear Groups. Let GX,G2 be two groups of prime order p so that (i) Gj = (gj) and

G2 = (#2); (u) ^ : G2 ^ Gj is an isomorphism with ijj(g2) = gi a n < i (m) e : Gi x G2 —> G7 is

a bilinear map. We remark that in some cases it can be that Gj = G2 (and in this case \p2

would be the identity mapping). Let Gx = (gi), G2 = (g2) groups as above with |Gi | = |G2 | =

p; a bilinear map is a map e s.t. for all (u,v) £ Gj x G 2 it holds that e(ax,bV) = e{a,b)x^ and

e (g i , g 2) * l -

Definition 2.6.1 (2-Variable Strong Diffie-Hellman (2SDH) Assumption). Let (Gi,G2) be

bilinear groups defined as above. The q-2SDH problem in (Gj,G2) is defined as fol-

lows: given a (3q + 4)-tuple {gi,g2,w2 <- g2'
u2 <- gV

2,g?°' ••••,£"*<a\>--->aq>h\'--->'bq) a s

input, output (c <— g{x*r,a <— g2
 r ,d,V\,V2) where ai,...,alj,bi,...,blj,d,f,r € Z p ; u^ <—

i/>(w2)>C,Vi € Gx; a, V2
 e G 2 ; and e(c,a) = e(g1,u2g2

i) / e(Vi,a) = e(wl,w2) • e(glr V2), d £

[bi,...,bq). The g-2SDH assumption suggests that any PPT algorithm A solving the <j-2SDH

www.manaraa.com

14

problem has negligible success probability, i.e.

x,ye Xp;g2 € G2;gx <- $(g2Y,W2 <- g2'>
u2 <- £ ^

a1,...,atj,bl,...,bl,eZp;c1<-g2 ,...,cq*-g2 ;
Pr ~ 0 .

e(c,a) = e(gltu2g() A e{Vlfa) ^ e(wy,w2) • e(gl,V2) A d i {bu...,bq}

D

Next we briefly introduce Okamoto signature.

$
— Key generation: Randomly select g2,u2,v2 <~ ^2 and set g! <— ip(g2), " i <— ^("2) ar*d

$ v i <~ ty(v2)- Randomly select x *— Z p and compute X <— gj G G2. SetvA: = (^i,^2-u2'x '2»^)

and secret key sk = (x).

— Signature generation: Let m G Z p be the message to be signed. Signer S randomly

1

selects r and s from Z p s.t. x + r 2 0 mod p; and compute c <— (g1"Mit'1)/*+r' oc <—

g2 ''> ^1 <~ V'PO'&i' ^2 <~ X +^82h> w n e r e f,r,s,h <— Z p . The signature for wi is

a - (c,a,s,Vi,V2).

— Signature verification: Given verification key vk - (g\,g2,u2,v2,X), message m, and

signature a - (c,a,s, V\, V2), check that m,s e Z p , c, Vj € G1 ; a, V2 € G2, c * 1, a * 1 and

e(c ,a) = © (g ^ g ^ i ^ ^) , e{Vi,a) - e(i/>(X),X) •§(#!, V2)- If they hold, then the verification

is valid; otherwise invalid.

2.7 Commitments

A commitment scheme is a protocol between two parties (i.e., the committer C and the

receiver V) that allows the committer C to commit to a message m so that the receiver can-

www.manaraa.com

15

not learn such m. Later the committer opens the commitment and reveals to the receiver

that she committed to m, and at this moment the committer cannot change her mind and

the commitment cannot be opened to a different message m' where m' * m. In this thesis,

we use non-interactive commitment scheme, where the committer can compute the com­

mitment by herself and then send it to the receiver; in the opening stage, the committer

sends m and the random coins used to the receiver at once, and the receiver simply run

the commitment verification algorithm by himself to make sure if m was the message the

committer had committed to.

Definition 2.7.1 (Secure Commitment Schemes). A (non-interactive) commitment scheme

E(COM) - COM.fCRS, Com, Vrf} is secure if the following properties hold:

— COMPLETENESS: For all PPT A,

Pr crs 4- CRS(lA);m <— A(crs);(c,Q <— Corn(crs,m);<p <— Vrf(crs,c,m,C) '• (p = 0

Pr 0.

BINDING: For all PPT A,

crs <- CRS(lA);(c,w0,Co<™i,Ci) <- A(crs);(p0 <- Vrf(crs,c,m0,C0);

(pi <— Vrf(crs,c,mi,Ci) = 1 : (po = (pi = I Am0^mi

(INDISTINGUISHABLE) HIDING: For all PPT A, Pr[IndHid^(A,0)] « Pr[IndHid> t(A,l)] ,

where IndHid^(A, b) is defined as below:

IndHid^(A,b)

crs ^CRS(1 A) ;

(m0,mi)<^A(crs);

{cbXb)<- Com{crs,mb);

Return V <— A(cb).

www.manaraa.com

16

•

Above we give an game-based formulation of the hiding property. Below we give a

formulation of such property in the simulation paradigm.

• (SIMULATABLE) HIDING: For all PPT A, there exist PPT algorithms CRS, Com such that

Pr[SimHid^(A,0)] «Pr[SimHid.4(A,l)] , where SimHid^A.b) is defined as

SimHid^(A,l)

crs <r- CRS(1A);

b'^ A°^cn-\crs);

Return V.

SimHid.4(A,0)

(crs,T)«-CRS(lA);

V «_ A°^crs'z'-\crs);

Return b'.

Oi(crs,m)

(c,C) <— Com(crs, m);

Output c.

O0(crs,r,m)

(c, £) <— Com(crs, T);

Output c.

We note that secure commitment schemes can be constructed in the plain model. In

that case, CRS := CRS and only security parameter will be included in crs, and the trapdoor

T is empty. Here we introduce two additional security properties of commitment, equivo­

cality and extractability. We also note that such properties cannot be achieved in the plain

model, and we formulate them under the trust setup of CRS.

Definition 2.7.2 (Equivocal Commitments). We say a secure commitment scheme E(COM) =

COM.{CRS, Com, Vrf} is equivocal if the following property holds:

www.manaraa.com

17

EQUIVOCALITY: For all PPT A, there exist PPT algorithms CRS, Com, Eqiv such that

Pr[Equiv_4(A, 0)] « Pr[Equiv^(A, 1)], where Equiv^(A, b) is defined as below

Equiv^(A, 1)

crs ^CRS(1 A) ;

b' ^ A°^crs-\crs);

Return V.

Equiv^(A, 0)

(crs,T)<-CRS(lA);

h'<-^O0(c«,T f-)(crs).

Return b'.

Oj (crs, m)

(c,C) <— Com (crs, m);

Output (c,C).

£>0(crs, T, m)

(c,£) <— Com(crs,T);

C <- Equiv(c,^,m);

Output (c,C).

D

Definition 2.7.3 (Extractable Commitments). We say a secure commitment E(COM)

COM.{CRS, Com, Vrf} is extractable if the following property holds.

- EXTRACTABILITY: For all PPT A, there exist PPT algorithms CRS, Ext such that

Pr
(crs,x) <— CRS(lA);(c,m,C) <— A(crs);<p <— Vrf(crs,c,m,C);

m' <— Ext(crs, x, c) : <p - 1 A m * m'

0.

D

2.8 Non-Interactive Zero-Knowledge

Definition 2.8.1 (Secure Non-Interactive Zero-Knowledge (NIZK) Schemes). An NIZK

scheme E(NIZK) - NIZK.{CRS,Prv,Vrf} is secure for relation R if the properties hold:

www.manaraa.com

18

— COMPLETENESS: For any PPT A,

Pr
crs <— CRS(\x);(x,w) <— A(crs);(c,Z,) <— Prv(crs,x,u>);

(p <— Vrf(crs, x, c) : (x, ii>) € R A $ = 0

- SOUNDNESS: For all PPT A,

Pr[crs ^ CRS(lx);(x,(;) ^ A(crs);<p <^- Mrf(crs,x,c) : x £ £R A (p = l] w 0.

ZERO-KNOWLEDGE: For all PPT ./4, there exist PPT algorithms CRS, Prv such that

Pr[SimZK4(A,0)] «Pr[SimZK^(A, l)] , where SimZK^(A,fc) is defined as

S i m Z K ^ A , !)

crs ^CRS(1 A) ;

V *- A°^crs-'\crs);

Return b'.

SimZK^(A,0)

(crs, T) ^ C R S (1 A) ;

V *- A°^crs-T'---\crs);

Return V.

0\ (crs, x, w)

(c,C) <— Prv(crs,x,w);

Output c.

O0(crs,T,x,w)

(c ,£)<- Prv(crs,T,x);

Output c-

n

Definition 2.8.2 (Non-Erasure Zero-Knowledge NIZKs). We say a secure NIZK scheme

E(NIZK) = NIZK.{CRS, Prv,Vrf} is non-erasure zero-knowledge for relation R, if the follow­

ing property holds:

- NON-ERASURE ZERO-KNOWLEDGE: For all PPT A, there exist PPT algorithms CRS, Prv,

www.manaraa.com

19

Eqiv such that Pr[Equiv^(A, 0)] ^ Pr[Equiv^(A, 1)], where Equiv^(A, b) is defined as

Equiv^(A, 1)

crs ^CRS(1 A) ;

b'*-A0^crs'---\crs);

Return V.

Equiv^(A, 0)

(c r s , r) ^ C R S (l A) ;

b'<- A°^crs'x'-'-\crs);

Return b'.

Oi {crs, x, w)

(c, C) <— Prv(crs, x, w);

Output (c,C).

O0(crs, x,x, w)

(c,E,) <— Prv(crs,r,x)

C <— Equiv(c,£,u;);

Output (c,C)-

D

Definition 2.8.3 (Knowledge-Extractable NIZKs). We say a secure NIZK scheme E(NIZK) =

NIZK.{CRS, Prv, Vrf} is knowledge-extractable for relation R, if the following property holds:

— KNOWLEDGE-EXTRACTION: For all PPT A, there exist PPT algorithms CRS, Ext such that

Pr
crs.x) <- CRS(lA);(x,c) <- A(crs);<p <- \frf(crs,x,c);

m <— Ext(crs, x,x,c) : <p = 1 A (x, w) £. R

0.

D

2.9 Interactive Zero-Knowledge Proofs

Definition 2.9.1 (Secure Zero-Knowledge (ZK) Schemes). An (interactive) ZK scheme £(ZK)

ZK.{CRS,P, V) is secure for relation R if the following properties hold:

www.manaraa.com

20

— COMPLETENESS: For any PPT A,

Pr
crs <r- CRS{lx);{x,w) <- A(crs);(fi,r\) <- lP(crs,x,w); V(crs,x)]|R

: (x,w)eRAfi = 0

— SOUNDNESS: For all PPT A,

Pr[crs <- CRS(lA);x *- .A(crs); (£,»;) <- H-A;l/(crs,x)]]R : x (2 £ R A /8 = l] w 0.

ZERO-KNOWLEDGE: For all PPT A, there exist PPT algorithms CRS,P such that

Pr[SimZK^(A,0)] «Pr[SimZK - 4(A,l)] , where SimZK^,(A,fc) is denned as

S i m Z K ^ A , !) SimZKx(A,0)

crs ^CRS(1 A) ;

b' *— \P(crs,x,w);A(crs)\R;

Return V.

(crs, T) ^ C R S (1 A) ;

b'^lP(crs,T,x);A(crs)lR;

Return b'.

n

Definition 2.9.2 (Non-Erasure Zero-Knowledge ZKs). We say a secure ZK scheme £(ZK) —

ZK.{CRS,P, V] is non-erasure zero-knowledge for relation R, if the following property holds:

- NON-ERASURE ZERO-KNOWLEDGE: For all PPT A, there exist PPT algorithms CRS,P, Eqiv

www.manaraa.com

21

such that Pr[Equiv^(A, 0)] ~ Pr[Equiv^(A, 1)], where Equiv^(A, i) is defined as below

Equiv^(A, 1)

crs <-CRS(lA);

b'<-A°*lcrs"Hcrs);

Return b'.

Equiv^(A,0)

(c rs ,T)^CRS(l A) ;

b><- A°^crs'x'---\crs)

Return b'.

0\{crs,x,w)

(<z,C)<- lP{crs,x,u>);A1h;

Output {a,I).

O0(crs,x,x,w)

(a ,£)«- | [P(crs ,T fx)M]|L ;

C <— Equiv(£,u>);

Output (a,C).

•

Definition 2.9.3 (Knowledge-Extractable ZKs). We say a secure ZK scheme £(ZK) = ZK.{CRS,

P, V} is knowledge-extractable for relation R, if the following property holds:

— KNOWLEDGE-EXTRACTION: For all PPT A, there exist PPT algorithms CRS, Ext such that

Pr
crs <- CRS(lA);x <- A(crs);(^rj) <- [[.4; V(crs,x)]]R;

m <— Ext(crs, T, JJ) : (x ,a;)(fRA^ = l

0.

D

2.10 Sigma Protocols

In this subsection we introduce Sigma protocols, [CDS94]. Informally, a Sigma-protocol is

a three move public randomness protocol (cf. Figure 2.7) with an honest verifier zero-

knowledge property and a special soundness property. In our formulation of Sigma-

www.manaraa.com

22

protocols below we will formalize soundness only to satisfy membership consistency (rather

than knowledge extraction).

X

Verifier \
x,w

\ Prover

e «— Coins()

<j> <— Vrt(x,a,e, z)

a L

e

z \

(a, () «- Comt(x,w)

z <~ Resp(:r, w, £, e)

Figure 2.7: Three-move public randomness protocol for relation R. Here e <— CoinsQ is

implemented a s e < - (0,1}^ where £ is the length of the challenge e.

Definition 2.10.1 (Secure Sigma Protocols). A Sigma protocol £(3MZK) = 3MZK.{Comt, Coins,

Resp, Vrf} as demonstrated in Figure 2.7 is secure for relation R if the properties hold:

— COMPLETENESS: For any PPT A,

Pr
(x,w) <— A(lx);(a,Q <— Comt(x,w);e <— Coins();

z «— Resp(x, w, C, e); (p <— Vrf(x, a,e,z) : (p = 0

SPECIAL MEMBERSHIP SOUNDNESS: For all PPT A,

Pr (x,a) <— ^4(lA);e <— Coins();z <— -A(e);<£ <— Vrf(x,fl,e,z) : 0 = 1 Ax £. Lf
0.

- HONEST-VERIFIER ZERO-KNOWLEDGE: For all PPT A, there exist a PPT algorithm Resp

www.manaraa.com

23

such that Pr[SimZK^(A, 0)] ~ Pr[SimZK^(A, 1)], where SimZK^(A,fc) is defined as

S i m Z K ^ A , !) SimZK^(A,0)

(a,C) <— Comt(i,w);

e <— Coins();

z <— Resp(x,w,C,e);

fc; <— A(x, w, a, e, z);

Return b'.

e <— Coins();

(a ,z ,£)<- Resp(x,e);

b' <— A(x,w,a,e,z);

Return b'.

Definition 2.10.2 (Non-Erasure Zero-Knowledge Sigma Protocols). A secure Sigma proto­

col E(3MZK) = 3MZK.{Comt, Coins, Resp, Vrf} is non-erasure zero-knowledge for relation R

if the following property also holds:

— NON-ERASURE HONEST-VERIFIER ZERO-KNOWLEDGE: For all PPT A, there exist PPT algo­

rithms Resp, Equiv such that Pr[Equiv^(A, 0)] =s Pr[Equiv^(A, 1)], where Equ iv^A, b) is

defined as below

Equiv^(A,l) Equiv^(A, 0)

(fl,C) <— C o m t ^ i f) ;

e <— Coins();

z <— Resp(x, w, C, e);

b' <— A(x,w,a,e,z,C)',

Return V.

e <— Coins();

(a,z,£) <— Resp(x,e);

C <- E^JTv(£);

V <— ^4(x,w,fl,e,z,C);

Return b'.

D

We note that the zero-knowledge formulated above is weak (honest verifier) and thus

unsuitable for many settings. Nevertheless, there are generic methods of transforming an

www.manaraa.com

24

honest-verifier zero-knowledge protocol to one that satisfies zero-knowledge in more rea­

sonable adversarial settings. For example, Damgard showed how one can use an equivocal

commitment to extend a Sigma protocol to achieve concurrent zero-knowledge in the CRS

model [DamOO]. Please refer to Section 2.9 of Nielsen's PhD thesis [Nie03] for a wonderful

explanation of Sigma protocols.

2.11 Public Key Encryption

A public key encryption scheme is defined by a tuple (KG, Enc, Dec) consisting of the key-

generation, encryption and decryption algorithms respectively.

Definition 2.11.1 (Secure Encryption Schemes). A public-key encryption scheme Z(PKE) =

PKE.{KG, Enc, Dec} is semantically secure if the following properties hold:

— COMPLETENESS: For all PPT A,

Pr (pk,sk) <— KG(l);m <— A(pk);(c,C) <— Enc(p/c,m);m' <— Dec(p/c,sk,c) :m' = m 4o.

(INDISTINGUISHABLE) HIDING: (Chosen-Plaintext Attack (CPA) Security) For all PPT A,

Pr[IndHid^(A,0)] £ Pr[IndHid^(A, l)] , where I n d H i d ^ A ,) is defined as below:

IndHid^(A,fc)

(pk,sk)^KG(lx);

(m0,mi) <— A(crs);

(cb,lh)*-Znc(pk,mh);

Return b'*-A{cb).

a

www.manaraa.com

25

We can also define the hiding property in the simulation paradigm.

(SIMULATABLE) HIDING: For all PPT A, there exist PPT algorithms KG, Enc such that

Pr[SimHid^(A, 0)] « Pr[SimHid_4(A, 1)], where SimHid^(A, b) is defined as below

SimHid^(A,l)

(pk,sk) <-KG(lx);

V «_ A°^k'-\pk);

Return V.

SimHid^(A,0)

(pk,sk) *-KG(lA);

b'«- A°^k'-\pk);

Return b'.

Ox{pk,m)

(c,C)<- Enc(pfc,m);

Output c.

O0(pk,m)

(c,£)<- Enc(pfc);

Output c.

In [DN00], simulatable PKE is introduced to design non-committing encryption. For

the definition of security, we also require the existence of an oblivious public key generator

KG* and a corresponding key-faking algorithm KG*. Similarly, we require an oblivious cipher-

text generator Enc* and a corresponding ciphertext-faking algorithm Enc*. Intuitively, the

key-faking algorithm is used to explain a legitimately generated public key as an oblivi­

ously generated public key. Similarly, the ciphertext-faking algorithm is used to explain a

legitimately generated ciphertext as an obliviously generated ciphertext.

Definition 2.11.2 (Simulatable PKE). We say a secure PKE scheme E(PKE) = PKE.{KG,Enc,

Dec} is simulable if there exist PPT algorithms KG*, KG*, Enc*, Enc* such that

- KEY OBLIVIOUSNESS: For all PPT A, Pr[SimHid^(A,0)] 4 Pr[SirnHid^(A,l)], where

www.manaraa.com

26

SimHid^(A, b) is defined as below

SimHid^(A,l)

(pht!)^ KG*(lx);

b> ^ A{pk,t]\,

Return V.

SimHid^(A,0)

{pk.sk) ^KG(1 A) ;

r\ <- KG'(pk);

b' <^- A{pk,t]);

Return V.

CIPHERTEXT OBLIVIOUSNESS: For all PPT A, Pr[SimHid^(A, 0)] « PrfSimHid^A, 1)],

where SimHid^(A, b) is denned as below

SimHid^(A,l)

(pk,sk) ^KG(1 A) ;

(c,Q^Enc*(pk);

b'^A(pk,c,Q;

Return b'.

SimHid^(A,0)

(pk,sk)<- KG(1A);

(c,£)<- Enc(pk,m);

C ^Enc*(p/c,c);

b'^A(pk,cX);

Return V.

•

http://%7bpk.sk

www.manaraa.com

27

Chapter 3

OBLIVIOUS TRANSFER

3.1 Introduction

When defining the security of cryptographic protocols, we generally strive to capture as

wide a variety of adversarial attacks as possible. The most popular method of doing so is

the simulation paradigm [GMW87] where the security of a real-world protocol is compared

to that of an ideal-world (perfectly secure) implementation of the same task. Within the

simulation paradigm there are several flavors. Firstly, basic simulation only guarantees se­

curity for single copy of a protocol executing in isolation. The Universal Composability (UC)

framework [CanOl, Can05] extends the simulation paradigm and defines security for pro­

tocols executed in arbitrary environments, where executions may be concurrent and even

maliciously interleaved. Secondly, we generally distinguish between static and adaptive

security. Static security protects against an adversary who controls some fixed set of cor­

rupted parties throughout the computation. Adaptive security, on the other hand, defends

against an adversary who can corrupt parties adaptively at any point during the course

of the protocol execution (for example by bribing them or hacking into their machines).

For adaptive security, we also make a distinction between the erasure model, where honest

parties are trusted to securely erase data as mandated by the protocol, and the non-erasure

model, where no such assumptions are made. Given the difficulty of erasing data securely

it is valuable to construct protocols in the latter model, which is the subject of this work.

www.manaraa.com

28

The seminal result of [CLOS02] shows that it is theoretically possible to design an adap-

tively secure and universally composable protocol for almost any task assuming the pres­

ence of some trusted setup such as a randomly selected common reference string (CRS).

Unfortunately, the final protocol of [CLOS02] should be viewed as a purely theoretical con­

struction. Its reliance on expensive Cook-Levin reductions precludes a practical imple­

mentation. Alternative efficient approaches to two-party and multi-party computation

received a lot of attention in the recent works of [DN03, KO04, GMY04, JS07, LP07, IPS08,

Lin09]. However, all of these results sacrifice some aspect of security to get efficiency. Con­

cretely, the work of [LP07] only provides stand-alone static security, [JS07] provides UC

static security, [GMY04, Lin09] provide UC/concurrent adaptive security but only in the

erasure model, and [DN03] provides UC adaptive security but only for an honest majority,

and [KO04] do not allow for an adversary that eventually corrupts all parties. The recent

work of [IPS08] can provide UC adaptive security but only given an efficient adaptively

secure Oblivious Transfer (OT) protocol. However, as we will discuss, no such protocols

were known. Lastly, we mention the work of [CDD+04], which gives a generic compiler

from static to adaptive security using secure channels. Unfortunately, this compiler does

not provide full adaptive security (does not allow for post-execution corruptions) and, as

was noted in [Lin09], crucially relies on rewinding and hence cannot be used in the UC

framework.

Indeed, thus far no efficient protocols for general multi-party computation, or even for

many specific two-party function evaluation tasks, achieve adaptive security. This is not

surprising given the difficulty of realizing adaptive security for even the most fundamental

www.manaraa.com

29

task in cryptography: secure communication. As was observed in [CFGN96], standard secu­

rity notions for encryption do not suffice. Adaptively secure communication schemes, also

called non-committing encryption schemes, were introduced and constructed in [CFGN96]

and studied further in [Bea97, DNOO], but these protocols are fairly complicated and inef­

ficient for large messages.

It turns out that many useful two-party tasks (e.g., Oblivious Transfer, OR, XOR, AND,

Millionaires' problem, etc.) are strictly harder to achieve than secure communication, the

reason being that these tasks allow two honest parties to communicate by using the cor­

responding ideal functionality. For example, using Oblivious Transfer (OT), an honest

sender can transfer a message to a receiver by setting it as both of his input values. There­

fore, an adaptively secure OT protocol for the transfer of k bit messages can be used as a

non-committing encryption of a A: bit message and so all of the difficulty and inefficiency

of non-committing encryption must also appear in protocols for tasks such as OT. Fur­

ther, unlike secure communication, many tasks also require security against the active and

malicious behavior of the participants. This might lead us to believe that the two difficul­

ties will be compounded making efficient adaptively secure implementations of such tasks

infeasible or too complicated to contemplate.

Taking Oblivious Transfer as an example, this indeed seems to be the case. The recent

work of [LZ09], proves a (black-box) separation between enhanced trapdoor permutations

(which allow for static OT) and adaptively secure OT, showing that the latter is indeed

"more complex" in a theoretical sense. This complexity is reflected in practice as well.

We are aware of only two examples (albeit inefficient) of adaptively secure OT protocols,

www.manaraa.com

30

from [Bea98] and [CLOS02]. Both of these works first construct an OT protocol for the

honest-but-curious setting and then compile it into a fully-secure protocol using generic

and inefficient zero knowledge proofs. In both constructions, the underlying honest-but-

curious OT protocols rely on ideas from non-committing encryption1 and hence inherit

its complexity. Since the full constructions require us to run zero knowledge proofs on

top of the complex underlying honest-but-curious protocol, there is little hope of making

them efficient by only using proofs for simple relations. This is in contrast to static secu­

rity (and adaptive security in the erasure model) for which we have recently seen efficient

constructions of OT protocols. For example, [GMY04, JS07, DNO08] construct OT proto­

cols by only using simple and efficient zero-knowledge proofs, while two very recent and

efficient protocols [PVW08, Lin08] do not use zero-knowledge proofs at all! The proto­

col of [PVW08] is particularly exciting since it is a UC-secure protocol in the CRS model

which runs in two rounds and uses a constant number of public key operations. Achieving

adaptive security based on these protocols has, however, remained as an open problem.

In summary, we can use ideas from non-committing encryption to get honest-but-

curious adaptively secure OT protocols, or we can use various clever ideas to achieve static

security in the malicious setting, but there has been no known way to combine these tech­

niques.

'The protocol of [Bea98] implicitly uses the plug-and-play approach from [Bea97], while the protocol of
[CLOS02] uses non-committing encryption in a generic way.

www.manaraa.com

31

3.1.1 Our Contributions

In this work we construct the first efficient (constant round, constant number of public-

key operations) adaptively secure Oblivious Transfer protocol in the non-erasure model.

Along the way we develop several techniques of independent interest which are applicable

to adaptive security in general.

First, we introduce a new notion called semi-adaptive security which is slightly stronger

than static security but significantly weaker than fully adaptive security. In particular, a

semi-adaptively secure protocol for a task like OT, does not yield a non-committing encryp­

tion scheme and hence does not (necessarily) inherit its difficulty. We then give a generic

compiler which transforms any semi-adaptively secure protocol into a (fully) adaptively

secure protocol. The compiler is fairly simple: we take the original protocol and execute it

over a secure communication channel (i.e., all communication from one party to another is

sent over a secure channel). The compilation effectively decomposes the problem of adap­

tive security into two (simpler) problems which can be tackled separately: the problem

of semi-adaptive security and the problem of realizing secure channels. We note that a

similar compiler was studied in [CDD+04]. As we mentioned, that compiler only works in

the stand-alone setting and transforms a statically secure protocol into one which is adap­

tively secure without post-execution corruptions. In contrast, our protocol works in the

UC setting, and results in fully adaptive security, but requires the starting protocol to be

semi-adaptively secure (a new notion which we formally define later).

Unfortunately, we saw that the construction of secure-channels is a difficult problem

and existing solutions are not very efficient. Also, as we already mentioned, we cannot

www.manaraa.com

32

completely bypass this problem since adaptive security for many tasks implies secure chan­

nels. However, for the sake of efficiency, we would like to limit the use of secure chan­

nels (and hence the use of non-committing encryption) to a minimum. For example, we

know that an OT protocol for one-bit messages implies a non-committing encryption of

a one-bit message. However, to get adaptive security for a bit-OT protocol, our compiler,

as described above, would use non-committing encryption to encrypt the entire protocol

transcript, and hence much more than one bit!

We fix this discrepancy by introducing a new notion called somewhat non-committing

encryption. Somewhat non-committing encryption has two parameters: the equivocality £

(measuring just how non-committing the scheme is) and the message size k. We first ob­

serve that somewhat non-committing encryption is efficient for small values of the equiv­

ocality parameter £, even when k is large (i.e., when we encrypt long messages). Secondly,

we observe that our compiler can use somewhat non-committing encryption where the

equivocality £ is proportional to the size of the input and output domains of the function­

ality. As a result, we obtain a very efficient compiler transforming any semi-adaptively

secure protocol for a task with small input /output domains (such as bit-OT) into a fully

adaptively secure protocol. We also show that this methodology can, in special cases, be

applied to tasks with larger domain sizes such as string-OT with long strings.

We apply our methodology to the OT protocol of Peikert et al. [PVW08], resulting in the

first efficient and adaptively secure OT protocols. Peikert et al. actually present a general

framework for constructing static OT, and instantiate this framework using the Quadratic

Residuocity (QR), Decisional Diffie-Hellman (DDH), and Lattice-based assumptions. In

www.manaraa.com

33

this work, we concentrate on the QR and DDH based schemes. We show that relatively

small modifications suffice to make these schemes semi-adaptively secure. We then employ

our compiler, using somewhat non-committing encryption, to convert them into (fully)

adaptively UC-secure OT protocols.

3.1.2 Concurrent and Independent Work

The recent result of [CDMW09] gives a generic black-box compiler from semi-honest adap­

tively secure OT to fully malicious adaptively secure OT, using cut-and-choose techniques.

Although the end result of our work is the same (adaptively secure OT), the two works take

very different approaches which complement each other well: the compiler of [CDMW09]

transforms semi-honest + adaptive security into malicious + adaptive security in the spe­

cial case of OT, while our compiler is a general transformation from malicious + semi-

adaptive security to malicious + adaptive security. The two starting notions of security

(semi-honest + adaptive vs. malicious + semi-adaptive) are incomparable and thus both

compilers are useful in different scenarios. In particular, our compiler can be used in con­

junction with the OT protocol of [PVW08] and results in an extremely efficient adaptively-

secure OT protocol using a constant number of rounds and 0(n) public-key operations

to transfer an n-bit string. In contrast, the compiler of [CDMW09] shows how to base

adaptively-secure OT on a simulatable cryptosystem in a black-box way, but at the expense

of running Q(A2) copies of the underlying semi-honest OT protocol, where A is the secu­

rity parameter, and thus requiring Q(A2n) operations for H-bit OT. Therefore our protocol

can be significantly more efficient.

www.manaraa.com

34

3.2 Building Block: Somewhat Non-Committing Encryption

What are some of the challenges in achieving adaptive security for a two-party protocol?

Let's assume that a protocol n between two parties PQ,P\ realizes a task T with respect to

static adversaries. That means that there is a static simulator which can simulate the three

basic cases: both parties are honest throughout the protocol, exactly one party is corrupted

throughout the protocol or both parties are corrupted throughout the protocol. To handle

adaptive adversaries, we require two more capabilities from our simulator: the ability to

simulate a first corruption (i.e., the case that both parties start out honest and then one of

them becomes corrupted) and simulating the second corruption (i.e., one party is already

corrupted and the other party becomes corrupted as well).

Simulating the first corruption is often the harder of the two cases. The simulator must

produce the internal state for the corrupted party in a manner that is consistent with the

protocol transcript so far and with the actual inputs of that party (of which the simulator

had no prior knowledge). Moreover, the simulator needs to have all the necessary trap­

doors to continue the simulation while only one party is corrupted. Achieving both of

these requirements at once is highly non-trivial and this is one of the reasons why efficient

protocols for adaptively secure two-party computation have remained elusive.

Interestingly, simulating the first corruption becomes much easier if the protocol n

employs secure channels for all communication between parties. At a high level, the sim­

ulator does not have to do any work while both parties are honest, since the real-world

adversary does not see any relevant information during this time! When the first party

becomes corrupted, we can just run a static simulation for the scenario in which this party

www.manaraa.com

35

was corrupted from the beginning but acting honestly and using its input. Then, we can

"lie" and pretend that this communication (generated ex post facto) actually took place over

the secure channel when both parties were honest. The lying is performed by setting the

internal state of the corrupted party accordingly. Since our lie corresponds to the simu­

lation of a statically corrupted party (which happens to act honestly), all of the trapdoors

are in place to handle future mischievous behavior by that (freshly corrupted) party. The

only problem left is in handling the second corruption - but this is significantly easier!

To formalize this, we will define a notion of semi-adaptive security where the simulator

needs to be able to simulate static corruptions as well as the case where one party starts

out corrupted and the other party becomes corrupted later on (but not the case where both

parties start out honest and may become corrupted later). The formal notion (with some

additional restrictions imposed on the simulator) appears in Section 3.4.

Informally, we have argued that if two-party protocol is semi-adaptively secure, then

the protocol is also fully adaptively secure if all communication between the parties is

sent over an idealized secure channel. Unfortunately, idealized secure channels are hard

to achieve physically and implementing such channels cryptographically in the real world

requires the inefficient use of non-committing encryption [CFGN96] to encrypt the entire

protocol transcript. Luckily, it turns out that we often do not need to employ fully non-

committing encryption to make the above transformation hold. Indeed, we define a weaker

primitive called somewhat non-committing encryption and show that this primitive can be

implemented with significantly greater efficiency than (fully) non-committing encryption,

and that it is often good enough to transform a semi-adaptively secure protocol into a fully

www.manaraa.com

36

adaptively secure protocol when the sizes of the input /output domains are small.

3.2.1 Defining Somewhat Non-Committing Encryption

First recall the notion of non-committing encryption from [CFGN96], which is a proto­

col used to realize secure channels in the presence of an adaptive adversary. In particular,

this means that a simulator can produce "fake" ciphertexts and later explain them as en­

cryptions of any possible given message. Several non-committing encryption schemes

have appeared in literature [CFGN96, Bea97, DNOO], but the main disadvantage of such

schemes is the computational cost. All of the schemes are interactive (which was shown to

be necessary in [Nie02]) and the most efficient schemes require Q(l) public-key operations

per bit of plaintext.

We notice that it is often unnecessary to require that the simulator can explain a cipher-

text as the encryption of any later-specified plaintext. Instead, we define a new primitive,

which we call somewhat non-committing encryption, where the simulator is given a set of £

messages during the generation of the fake ciphertext and must later be able to plausibly

explain the ciphertext as the encryption of any one of those £ messages. In a sense, we dis­

tinguish between two parameters: the plaintext size (in bits) k and the equivocality £ (the

number of messages that the simulator can plausibly explain). For fully non-committing

encryption, the equivocality and the message size are related by £ = 2k. Somewhat non-

committing encryption, on the other hand, is useful in accommodating the case where the

equivocality £ is very small, but the message size k is large.

It is challenging to define an ideal-functionality for somewhat non-committing encryp-

www.manaraa.com

Functionality Jr/Z.

The ideal functionality TCQ interacts with adversary S, and two parties including an initiator I and a

receiver R. It consists of a channel-setup phase, after which the two parties can send arbitrarily many

messages from one to another. The functionality is parameterized by a non-information oracle Af. For

all received messages, the functionality verifies that sid = (l,R,sid') for some sid', and ignores them

otherwise.

Channel setup:

— Upon receiving (CHSETup,/,sid) from party I, initialize the machine Af and pass

this input to Af. Forward messages (L E A K C H S E T U P , ! ^ ^ , . . .) from Af to the adver­

sary S, and (INFLCHSETUP,-R,SII2, . . .) from the adversary S to N. Once N outputs

(CHSETUPRETURN, R,sid), output this output to party R, record the tuple (sid,Af). Ignore

future (CHSETUP, . . .) , and (INFLCHSETUP, . . .) .

Message transfer:

— Upon receiving (SEND, P, sid, m) from party P where P e {I,R}, find a tuple (sid,Af) and,

if none exists, ignore the input. Otherwise, invoke Af with (SEND, P, sid, m), and forward

(LEAKSEND,P,sid , . . .) and (lNFLSEND,P,sid,...) messages between the oracle Af and the adver­

sary S. Once N returns (SENDRETURN, P,sid, m), output it to the other party P = {I,R] - [P].

Corruption:

— Upon receiving (CORRUPT, P,sid) from the adversary <S, send (CORRUPT, P, sid) to N and for­

ward its re turned information to S. After the first corruption, stop the execution of Af and

give S complete control over the functionality (i.e., <S learns all inputs and can specify any

outputs) .

Figure 3.1: The parameterized secure-channel ideal functionality, Ts

www.manaraa.com

38

Interaction with
Ideal World Adversary

M

Interaction with
Environment

(CHSETUP. I , sid) (CHSETUPRETURN. R, sit

Interaction with
Ideal World Adversary

M

Interaction with
Environment

(SEND, P, sid, m) (SENDRETURN, P, sid, m)

TM Figure 3.2: Pictorial version of the ideal functionality J$c . The left subfigure is for action

CHSETUP, and the right one for action SEND where P € {I,R}-

tion, since the ideal world captures a notion of security which is too strong. Here, we

take the approach of [CK02] where ideal-world functionalities are weakened by the inclu­

sion of a non-information oracle which is a PPT TM that captures the information leaked to

the adversary in the ideal world. The ideal functionality for secure channels, given in Fig­

ure 3.1 (also refer to Figure 3.2), is parameterized using a non-information oracle N which

gets the values of the exchanged messages m and outputs some side information to the ad­

versary S. The security of the secure channel functionality J^ depends on the security

properties required for the machine N and thus we can capture several meaningful no­

tions. Let us first start with the most secure option which captures (fully) non-committing

encryption.

Definition 3.2.1. Let A/fu11 be the oracle, which, on input (SEND, P, sid, m), produces the

output (LEAKSEND, P,sz'd, \m\) and, on any inputs corresponding to the CHSETUP, CORRUPT

commands, produces no output. We call the functionality J^ " , or just ^ c for brevity, a

www.manaraa.com

39

(fully) non-committing secure channel. A real-world protocol which realizes J^c is called a

non-committing encryption scheme (NCE).

Above, the oracle M never reveals anything about messages m exchanged by two honest

parties, even if (both of the) parties later get corrupted. Hence the functionality is fully

non-committing. To define somewhat non-committing encryption we first give the following

definitions of non-information oracles.

Definition 3.2.2. A machine 1Z is called a message-ignoring oracle if, on any input (SEND, P,sid, m),

it ignores the value m and processes only the input (SEND,P,sid,\m\). A machine M called

a message-processing oracle if it has no such restrictions. We call a pair of machines (M,TL)

well-matched if no PPT distinguisher V (with oracle access to either M. or 7?.) can distin­

guish the message-processing oracle M from the message-ignoring oracle TZ.

We are now ready to define the non-information oracle used by a somewhat non-

committing secure channel ideal functionality. Please also refer to Figure 3.3.

Definition 3.2.3. Let (M, TZ) be a well-matched pair which consists of a message-processing

and a message-ignoring oracle respectively. Let M — M^ be a (stateful) oracle with the fol­

lowing structure.

— Upon initialization, Me chooses a uniformly random index i <— {1, . . . , £}. In addition it

initializes a tuple of £ independent TMs: {Mi,...,M() where Mj - M and, for j * i, the

machines Mj are independent copies of the message-ignoring oracle TZ.

- Whenever Me receives inputs of the form (CHSETUP, P,sid) or (SEND, P,sid,m), it passes

the input to each machine Mj receiving an output y,-. It then outputs the vector (y1 (. . . , yf).

www.manaraa.com

40

- Upon receiving an input (CORRUPT, P,sid), the oracle reveals the internal state of the

message-processing oracle A/] only.

For any such oracle Ne, we call the functionality T^L an (-equivocal non-committing secure

channel. For brevity, we will also use the notation Jgc to denote J^Q for some such oracle

Ne. Lastly, a real world protocol which realizes J^ is called an (-equivocal non-committing

encryption scheme (£-NCE). D

X

Interaction with
Ideal World Adversary

Gp Op Cp kf up)
9 ? ? J V 9 i

^SEND, PJ sid, \m\) (SEND, r^sid, \m\) (SEND: Pr sid. m) (SRND, P;sid; |m|) /

Interaction with
Environment

(SEND,P, sid, m) (SENDRETURN, P, sid, m)

Figure 3.3: Pictorial version of the ideal functionality J£c ^o r a c t ion SEND where P 6

{I,R}. Note that M = (Afi,...,M€), where N{ «- «M for z 4- {1,...,^} while A/)- «- ft for

;e{i mi*'}-

As before, no information about messages m is revealed during the "send" stage. How­

ever, the internal state of the message-processing oracle A/}, which is revealed upon cor­

ruption, might be "committing." Nevertheless, a simulator can simulate the communica­

tion between two honest parties over a secure channel, as modeled by J^c, in a way that

allows him to later explain this communication as any one of £ possibilities. In particu-

www.manaraa.com

41

lar, the simulator creates £ message-processing oracles and, for every SEND command, the

simulator chooses £ distinct messages mi,...,m£ that he passes to the oracles M\,...,M.£

respectively. Since message-processing and message-ignoring oracles are indistinguish­

able, this looks indistinguishable from the side information produced by J^c. Later, when

a corruption occurs, the simulator can convincingly explain the entire transcript of com­

munication to any one of the £ possible options, by providing the internal state of the

appropriate message-processing oracle M.{.

3.2.2 Construction for £-NCE

The construction of £-NCE is based on a simulatable public-key system [DNOO], wherein it

is possible to generate public keys obliviously, without knowing the corresponding secret

key, and to explain an honestly (non-obliviously) generated public key as one which was

obliviously generated. In a similar way, there should be a method for obliviously generat­

ing ciphertexts (without knowing any plaintext) and to explain honestly generated (non-

oblivious) ciphertexts as obliviously generated ones. Refer to the full version for review

of the syntax and security properties of such a scheme. Our £-NCE protocol construction,

shown in Figure 3.4, uses a fully non-committing secure channel, but only to send a very

short message during the setup phase. In addition, it uses a simulatable public-key sys­

tem and a symmetric key encryption scheme where ciphertexts are indistinguishable from

uniformly random values (the latter can be constructed from any one way function). For

very long communications and small £, our ^-NCE scheme is significantly more efficient

than (full) NCE.

www.manaraa.com

42

Protocol 7tgC

Let (KG, Enc, Dec) be a simulatable public-key system and KG*, Enc* be the corresponding oblivious key gen­

erator and oblivious ciphertext generator algorithms. Further, let (KGsym, EncsyrTI, Decsym) be a symmetric-

key encryption scheme in which ciphertexts are indistinguishable from uniformly random values of the

same length.

Channel Setup: An initiator J sets up a channel with a receiver R as follows:

— The initiator I sends a random index i € {!,...,£) to the receiver R over a fully non-

committing secure channel.

— The initiator I generates £ public keys. For ;' 6 {!,...,£] \ {;'), the keys (pk:,nj)«— KG*(1A) are

sampled obliviously, while (pfc(-,s/c,) <— KG(1A) is sampled correctly. The keys pkx,...,pk(are

sent to the receiver R while the initiator I stores skj.

— The receiver R chooses a random key K <— KGsyrT1 and computes (C,,£,) <— Enc(pkj,K) cor­

rectly. In addition, R samples (Cj,Cj) <— Enc*(pfc.-) obliviously for ;' e [!,...,£) \ [i] and sends

the ciphertexts C j , . . . ,Q to the initiator /.

— The initiator I decrypts the key K <— Dec(pfc;,sfc,,Cj). Both parties store (K,i).

Encryption: An initiator I encrypts a message m to a receiver R as follows:

— The initiator I computes £, <— Enc|yrn(m) and chooses £; for j e {!,...,£) \ {i\ as uniformly

random and independent values of length |£,|. The tuple (£i,...,£^) is sent to the receiver

R.

— The receiver R ignores all values other than £,-. It computes m <— Dec^ (£,).

Figure 3.4: The £-NCE protocol ne
S{

www.manaraa.com

43

Theorem 3.2.4. The protocol n^c in Figure 3.4 is an £-NCE scheme. Specifically, it UC-realizes

functionality J^c in the presence of an active and adaptive adversary.

Let us look at the efficiency of the construction. For concreteness we will assume that

the secure channel used to encrypt the index i are implemented using the NCE protocol of

[DNOO]. The simulatable public-key system (which we use during channel setup and also

which is used in the protocol of [DNOO]) can be instantiated with e.g. ElGamal Encryption.

Lastly, the symmetric key system can be implemented very efficiently using some variable

length encryption algorithm e.g. AES in CBC mode.

The protocol of [DNOO] is an expected 6 round protocol which exchanges a t bit message

using an expected 0{t) number of operations.2 Since we use the NCE protocol to send an

index i € [!,...,£}, this requires C(log^) number of public key operations. In addition to

NCE, we use the simulatable public key system. However, we only use it to perform one

encryption/decryption operation and 0(£) oblivious key-sampling, ciphertext-sampling

operations. For ElGamal, this just means choosing random group elements which is effi­

cient and hence we do not count it as a public key operation. Lastly, for the encryption

phase we only use symmetric key operations. This gives us a total of (expected) O(log^)

public key operations, 0(£) communication and fewer than (expected) 8 rounds of inter­

action for the channel setup phase. After channel-setup, encryption is non-interactive

and requires only symmetric key operations. However, the encryption of a A: bit message

requires 0(£k) communication.

2For large messages (larger than the security parameter) the protocol of [DNOO] can be made guaranteed
3 round. However, the tradeoff is that the number of public key operations is at least security parameter.
Since we consider very small messages (3 bits) we settle for the expected 6 round protocol.

www.manaraa.com

44

3.3 Building Block: Semi-Adaptively Secure Protocols

As an application of £-NCE, we now give a general theorem showing that a protocol with

semi-adaptive security can be compiled into a protocol with (full) adaptive security when

all of the communication is encrypted using £-NCE for some appropriate £. However, we

must first give a formal definition of semi-adaptive security.

Definition 3.3.1. An adversarial strategy is second-corruption adaptive if either at least

one of the parties is corrupted prior to protocol execution or no party is ever corrupted. In

the former case, the other party can be adaptively corrupted at any point during or after

protocol execution.

Intuitively, we would like to say that a protocol is semi-adaptively secure if it is se­

cure with respect to second-corruption adaptive strategies. Unfortunately, there are two

subtleties that we must consider. Firstly, we know that most tasks cannot be realized in

the Universal Composability framework without the use of trusted setup. However, the

use of trusted setup complicates our transformation. The point of using (somewhat) non-

committing encryption is that the simulator can lie about anything that occurs while both

parties are honest. However, we often rely on trusted setup in which some information is

given to the adversary even when both parties are honest. For example, the usual mod­

eling of a common reference string specifies that this string is made public and given to

the adversary even when none of the participants in the protocol are corrupted. In this

case the simulator is committed to such setup even if the parties communicate over secure

channels. Therefore we require that, when trusted setup is used, the semi-adaptive simu­

lator simulates this setup independently of which party is corrupted. We call this property

www.manaraa.com

45

setup-adaptive simulation.

The second subtlety comes from the following type of problem. As we outlined in

our informal discussion, we wish to run the semi-adaptive simulator once the first party

gets corrupted and then "lie" that the simulated conversation took place over the secure

channel. However, when the first party gets corrupted after the protocol execution, then

the ideal functionality has already computed the outputs using the honest inputs and will

therefore not accept anymore inputs from the semi-adaptive simulator. Recall that we run

the semi-adaptive simulator with respect to an adversary A which follows the protocol ex­

ecution using the corrupted party's honest input x. If the semi-adaptive simulator extracts

the same input x as the one used by A, then we also know the corresponding output and

can give it to the semi-adaptive simulator on behalf of the ideal functionality. Therefore it

is crucial that the semi-adaptive simulator can only submit the actual input x. We call this

property input-preserving. Putting Definition 3.3.1 and the above notions together, we are

finally ready to define semi-adaptive security.

Definition 3.3.2. We say that a protocol n semi-adaptively realizes the ideal functionality

T if there exists a setup-adaptive and input-preserving PPT simulator S such that, for any

PPT adversary A and environment Z which follow a second-corruption adaptive adversar­

ial strategy, we have REAL^j^z ~ IDEAL j r^ z .

Lastly, we define the notion of a well-structured protocol. Since even non-committing

encryption commits the simulator to the lengths of the exchanged messages, the number of

such messages, and the identities of the sender and receiver of each message, we require

that this information is fixed and always the same any given execution of a protocol. Al-

www.manaraa.com

46

most all known constructed protocols for cryptographic tasks are well-structured and any

protocol can be easily converted into a well-structured protocol.

3.4 Compiler: Adaptively Secure Two-Party SFE

Functionality of two party secure function evaluation for a function / : Xj x X% —» Yj x YR

can be defined as in Figure 3.5.

Functionality -^cpE

JsPE, parameterized with a function / : Xj x X# —» Y/ x YR, interacts with adversary S, and two parties

an initiator J and a responder R. For each input or message, the functionality verifies that sid = (l,R,sid')

for some sid', and ignores it otherwise.

Evaluation:

— Upon receiving the input value (EVALUATE,P,sid,xp) from party P, where P e [I,R],

record the value (P,xp) and send the message (L E A K E V A L U A T E . P , ^) to <S. Ignore future

(EVALUATE,P,. . .) inputs.

— Upon receiving the message (INFLEVALUATE,P,sid) from 5 where P € {I,R}, if either (I,xj) or

(R,XR) is not recorded, ignore the message. Else if (yi,yR) is not recorded, then compute

(VI'VR) *~ f(xI'xR.) a n d record {yi,]/R)'> send the output value (EVALUATERETURN,P,sid,yp) to

par ty P. Ignore future (EVALUATE,? , . . .) messages from the adversary.

Figure 3.5: Two-party secure evaluation functionality -^pE-

First we look at the simple compiler using idealized secure channels.

Theorem 3.4.1. Let -^pE be the two-party ideal functionality which computes some function

f as defined in Figure 3.5. Assume that a well-structured two-party protocol n for J7^ is

www.manaraa.com

47

semi-adaptively secure. Let n' be the protocol in which the parties run n but only communicate

with each other using non-committing secure channels as modeled by J^Q. Then n' is (fully)

adaptively secure.

As we already mentioned, this compiler is usually not very efficient because of its ex­

cessive use of secure channels and hence NCE. Recall that secure channels are employed so

that, when both parties are honest, the adversary does not see any useful information and

so this case is easy to simulate. Then, when the first party gets corrupted, our simulator

simply makes up the transcript of the communication that should have taken place ex post

facto. This transcript is generated based on which party got corrupted, what its inputs were

and what its outputs were. However, we notice that for many simple protocols there are

not too many choices for this information. The simulator must simply be able to credibly

lie that the communication which took place over the secure channel corresponds to any

one of these possible choices. Using this intuition, we show that a more efficient compiler

using £-NCE (for some small £) suffices.

Theorem 3.4.2. Let J$¥E be the two-party ideal functionality computing some function f :

Xj x XR —» Yj x YR, as defined in Figure 3.5. Assume that a well-structured two-party protocol

n for -?spE is semi-adaptively secure. Let n' be the protocol in which the parties run n but

only communicate with each other using (-equivocal secure channels as modeled by J^c where

£ - \XJ\\YJ\ + \XR\\YR\. Then n' is (fully) adaptively secure.

3.5 PVW Compiler for Statically Secure OT

We start by giving an ideal functionality for OT, following the modeling of [Can05].

www.manaraa.com

48

Functionality J-Q~£

JXJY interacts with adversary 5 , and two parties a sender S and a receiver R. For each input or message,

the functionality verifies that sid = (R,S,sid') for some sid', and ignores it otherwise.

Transfer:

— Upon receiving an input (TRANSFER,S,sid,(XQ,X-[)) from party S, where each XJ £ {0,1(,

record (XQ.XI) and send (LEAKTRANSFER,S,sid) toS. Ignore further (TRANSFER,S, . . .) .

— Upon receiving an input (TRANSFER, R,sid,a) from party _R, where a e {0,1}, record a and

send (LEAKTRANSFER,R,sid) t o S . Ignore further (TRANSFER,R, . . .) .

— Upon receiving a message (INFLTRANSFER,.R,sid) from 5 , if either XQ,X\ or a is not recorded,

ignore the message. Else send ou tpu t (TRANSFERRETURN, R, sid, xa) to party R. Ignore further

(INFLTRANSFER,.R, . . .) messages from S.

Figure 3.6: Oblivious transfer functionality J~OJ.

In [PVW08], Peikert et al. construct an efficient OT protocol in the CRS model with

UC security against a malicious but static adversary. They do so by introducing a new

primitive called a dual-mode cryptosystem, which almost immediately yields an OT protocol

in the CRS model, and give constructions of this primitive under the DDH, QR and lattice

hardness assumptions. We therefore first present a brief (informal and high-level) review

of dual-mode encryption as in [PVW08], and then will formally define a modified version

of this primitive which will allow us to get adaptive security.

A dual-mode cryptosystem is initialized with system parameters which are generated

by a trusted third party. For any choice of system parameters, the cryptosystem has two

types of public/private key pairs: left key pairs and right key pairs. The key-generation

www.manaraa.com

49

algorithm can sample either type of key pair and the user specifies which type is desired.

Similarly, the encryption algorithm can generate a left encryption or a right encryption of

a message. When the key pair type matches the encryption type (i.e. a left encryption of a

message under a left public key) then the decryption algorithm (which uses the matching

secret key) correctly recovers the message.

Definition 3.5.1 (Dual-Mode Encryption). A dual-mode cryptosystem for message space

(0,1}" is defined by the following polynomial-time algorithms:

— (crs, T) <— PG(1A, n). The parameter generation algorithm PG is a randomized algorithm

which takes security parameter A and mode p € {0,1} as input, and outputs (crs, x),

where crs is a common reference string and T is the corresponding trapdoor informa­

tion. For notational convenience, the random coins used for parameter generation are

also included in T.

— (pk,sk) <— KG(crs, a). The key generation algorithm KG is a randomized algorithm which

takes crs and a key type a € {0,1}, and outputs a key pair (pk.sk), where pk is an en­

cryption key and sk the corresponding decryption key for message encrypted on key

type a. The random coins used for key generation are also included in sk.

— (c,C) <— Enc(crs,pk,b,m). The encryption algorithm Enc is a randomized algorithm

which outputs a ciphertext c for a message m on encryption type b. Here C is the

random coins used for encryption.

— m <r- Dec(crs,pk,sk,c). The decryption algorithm Dec is a deterministic algorithm which

decrypts ciphertext c into plaintext m.

•

http://pk.sk

www.manaraa.com

50

Definition 3.5.2 (Secure Dual-Mode Encryption). A dual-mode cryptosystem is secure if

the following properties hold:

- COMPLETENESS: For all PPT A,

Pr 0
\i,a <- A(lx);(crs,r) <- PG(1A,p);m *- A(crs);(pk,sk) <- KG(crs.a);

(c,C) <— Enc(crs,pk,o,m);m' <— Dec(crs,pA:,sA:,c) :m'^m

— MODE INDISTINGUISHABILITY: For all PPT .4, Pr[IndMode^(A, 0)] ~ Pr[IndMode^(A, 1)],

where IndMode^(A, •) is defined as below:

IndMode^A.fo)

{crsb,Tb)^PG(lx,by,

Return b' <— A(crsi,).

MESSY BRANCH IDENTIFICATION: For all PPT A, there exists a PPT algorithm Idf comput­

ing the "messy" branch a' such that

Pr
(crs,r) <— PG(lA,0);(pA:,sfc,cr) <— A(crs);(j> <— KG(crs,a,pk,sk);

a' <— Idf\crs, t,pk) : </> = 1 A a = a'

(MESSY BRANCH) CIPHERTEXT STATISTICAL HIDING: For all PPT A, there exist a PPT al­

gorithm Enc such that Pr[SimHid.4(A, 0)] ~ Pr[SimHid^(A, 1)], where SimHid^(A,fc) is

www.manaraa.com

51

defined as below

SimHid^(A,l) SimHid_4(A,0)

(crs,T)<-PG(lA ,0);

(pk,sk) <r- KG(crs,o);

b>«_ A°^crs*k'-\crs,pk);

Return b'.

{crs.x) <-PG(lA ,0);

(pk,sk) <— KG(crs,a);

b'<-A°°lm'z'Pk'-){crs,pk);

Return b'.

0\(crs,pk,m)

(c,C) <— Enc(crs,pk, I-a, m);

Output c.

Oo(crs,r,pk,m)

(c,£)<- Enc(crs,r,pk);

Output c.

ENCRYPTION KEY DUALITY: For all PPT A, there exist PPT algorithms KG, EquivKey such

that Pr[Equiv^(A, 0)] ~ Pr[Equiv^(A, 1)], where Equiv^(A, b) is defined as below

Equiv^(A, 1) Equiv^(A,0)

{crs, T) ^ - P G (1 A , 1) ;

(pk,sk) <— KG(crs,a);

b' <— A{crs,pk,sk);

Return V.

(crs,r) ^ P G (1 A , 0) ;

(p*,£)<-KG(crs);

sk <— EquivKey(pfc, E,, a);

b' <— A(crs,pk,sk);

Return V.

•

As shown in [PVW08], a dual-mode cryptosystem can be used to get an OT protocol as

shown in Figure 3.7. The receiver chooses to generate a left or right key depending on his

input bit a, and the sender uses left-encryption (b - 0) for the left message x0 and right-

www.manaraa.com

52

Sender

for b = 0,1

1

Enc(trsot,pfc,6,Xi,)

crsot

p/c

2/0,2/1

3
, Receiver

(pk,sk) <— KG(crs0t,(j)

X , , <- DecCcr^otjpfc.sfcjj/ff)

Figure 3.7: The generic OT protocol in [PVW08].

encryption for the right message. The receiver then uses the secret key to correctly decrypt

the chosen message.

Security against malicious (static) adversaries in the UC model relies on the two dif­

ferent modes for generating the system parameters: messy mode and decryption mode. In

messy mode, the system parameters are generated together with a messy trapdoor. Using

this trapdoor, any public key (even one which is maliciously generated) can be easily la­

beled a left key or a right key. Moreover, in messy mode, when the encryption type does

not match the key type (e.g. a left encryption using a right public key) then the ciphertext

is statistically independent of the message. Messy mode is useful to guarantee security

against a corrupt receiver: the messy trapdoor makes it easy to extract the receiver bit and

to create a fake ciphertext for the message which should not be transferred. On the other

hand, in decryption mode, the system parameters are generated together with a decryption

trapdoor which can be used to decrypt both left and right ciphertexts. Moreover, in de­

cryption mode, left public keys are statistically indistinguishable from right public keys.

www.manaraa.com

53

Decryption mode is useful to guarantee security against a corrupt sender: the decryption

trapdoor is used to create a public key which completely hides the receiver's selection bit,

and to compute a decryption trapdoor and extracting both of the sender's messages. In

each mode, the security of one party (i.e., the sender in messy mode, and the receiver in

decryption mode) is guaranteed information theoretically. To achieve security for both par­

ties simultaneously all that is needed is one simple computational requirement: the system

parameters generated in messy mode need to be computationally indistinguishable from

those generated in decryption mode.

3.6 Semi-Adaptively Secure OT

In order to make the PVW OT protocol adaptively secure using our methodology, we need

to make it semi-adaptively secure (section 3.4). We do so by a series of simple transforma­

tions.

First, we observe that in the PVW protocol, the simulator must choose the CRS crsot

based on which party is corrupt - i.e. the CRS should be in messy mode to handle a cor­

rupt receiver or in decryption mode to handle a corrupt sender. This is a problem for us

since the definition of semi-adaptive security requires that the simulator is setup-adaptive

which means that it must simulate the CRS independently of any information on which

parties are corrupted. We solve this issue by using a coin-tossing protocol to choose the

CRS of the PVW OT protocol. Of course, coin-tossing requires the use of a UC secure com­

mitment scheme which also needs their own CRS (crscom)! However, if we use an (efficient)

adaptively secure commitment scheme (e.g. [DN02, DG03]) then the simulator's choice of

www.manaraa.com

54

crscom c a n be independent on which party is corrupted. Unfortunately, this approach only

works if the CRS for the OT protocol comes from a uniform distribution (over some group)

and this too is not the case in all instantiations of the PVW protocol. However, we observe

that the CRS of the OT protocol {crsot) can be divided into two parts crsot - (crssys,crstmp),

where a system CRS crssys can be independent of which party is corrupted (i.e. can be

the same for both messy and decryption mode) but may not be uniform, while crstmp de­

termines the mode (messy or decryption) and thus needs to depend on which party is

corrupted, but this part is required to be uniform. Therefore we can use an ideal CRS

functionality to choose the setup for our protocol which consists of {crscorn,crssys) and then

run a coin-flipping protocol to choose the uniform value crstm„.

Secondly, we must now consider the cases where one party is corrupted from the begin­

ning, but the second party becomes corrupted adaptively during the protocol execution.

Let us first consider the case where the sender starts out corrupted. In this case, to han­

dle the corrupt sender, the simulator needs to simulate the execution in decryption mode.

Moreover, to extract the sender's value, the simulator uses the decryption trapdoor to cre­

ate a dual public key (on behalf of the receiver) which comes with both a left and a right

secret key. Later, if the receiver becomes corrupted, the simulator needs to explain the ran­

domness used by the receiver during key generation to create such a public key. Luckily,

current dual-mode schemes already make this possible and we just update the definition

with a property called encryption key duality to capture this. Now, consider the case where

the receiver is corrupted at the beginning but the sender might also become corrupted later

on. In this case the simulator simulates the execution in messy mode. In particular, the

www.manaraa.com

55

simulator uses the messy trapdoor to identify the receiver key type (right or left) and thus

extract the receiver bit. Then the simulator learns the appropriate sender message for that

bit and (honestly) produces the ciphertext for that message. In addition, the simulator

must produce a "fake" ciphertext for the other message. Since, in messy mode, this other

ciphertext is statistically independent of the message, it is easy to do so. However, if the

sender gets corrupted later, the simulator must explain the fake ciphertext as an encryp­

tion of some particular message. To capture this ability, we require the existence of internal

state reconstruction algorithm which can explain the fake ciphertext as an encryption of any

message. Again, we notice that the QR instantiation of the PVW scheme already satisfies

this new notion as well.

As explained above, in the enhanced version of DME, our parameter generation PG in­

cludes two stages PGsys and PG tmp, i.e., compute (G, crssys, r s y s) <— PGsys(lA) and {crstmp, rimp)

PG tmp(^, G,crssys, Tsys) where G is a group with operator "+", and set crs <— (crssys,crstmp)

and T <— (Tsys,T tmp). Note that the system CRS is independent of mode yi.

Definition 3.6.1 (Enhanced DME). We say a secure DME is an enhanced scheme if the

following properties hold

— ENHANCED MODE INDISTINGUISHABILITY: For all PPT A,

Pr[IndMode^(A, 0)] « Pr[IndMode^(A, 2)] « Pr[IndMode^(A, 1)]

www.manaraa.com

56

where IndMode^(A, •) is defined as below:

IndMode.4(A,b)

(G , c r s , r) ^PG s y s (l A) ;

li be {0,1} then (crsj,, Tj,) <— PGtmp(b,G,crs,r)

$
else b — 2 then crsy <— G;

Return b' <— ^.(G,crs,crsj,).

(MESSY BRANCH) CIPHERTEXT STATISTICAL EQUIVOCALITY: For all PPT A, there exist PPT

algorithms Enc, Eqiv such that Pr[Equiv^(A, 0)] ~ Pr[Equiv^(A, 1)], where Equiv^(A, b)

is defined as below

E q u i v ^ A , !)

(c r s ,T)^PG(l A , 0) ;

(pk,sk) <— KG(crs,cr);

b' <- A°^crs>-\crs);

Return V.

Equiv^(A,0)

(crs,T)<-PG(lA ,0);

(pk,sk) <— KG(crs,<r);

fe' « _ ^ O o (c « . T , -) (c r s) ;

Return h'.

O^crs, MI)

(c,C) <— Enc(crs,pfc, 1 —a,m);

Output (c,C).

Co(crs, r ,m)

(c,£)«— Enc(crs, T);

C <- Equiv(c,£,m);

Output (c,C).

•

www.manaraa.com

57

3.6.1 Construction

Based on the above transformations, a generic construction for a semi-adaptively secure

OT protocol is given in Figure 3.8. It consists of two phases, the coin tossing phase and

the transferring phase (which is separated by a dot line in the figure). The CRS consists

of two pieces: the first piece is a system CRS denoted as crsSyS, while the second piece

is for an adaptively secure UC commitment protocol which will be used for constructing

a coin tossing protocol. The UC commitment includes two stages, the commit and the

open stages which could be interactive; a randomly selected value r is committed by the

receiver for the sender in the commit stage, and after receiving a randomly selected value

s from the sender, the receiver open the committed r to the sender, and both sender and

the receiver can compute a temporal CRS crstmp based on s and r. The temporal CRS crstmp

together with the system CRS crss„s will be used as the CRS for the transferring phase and

we denote it as crsot. With crsot in hand, we "plug in" the PVW protocol (Figure 3.7) but

based on the enhanced dual-mode cryptosystem to achieve message transferring.

Theorem 3.6.2. Given an adaptively UC-secure commitment scheme and an enhanced dual-

mode cryptosystem as in Definition 3.5.2, the protocol in Figure 3.8 semi-adaptively realizes

Jx)j in the J^^s-hybrid model.

3.7 QR-based Concrete Construction for Bit OT

3.7.1 QR-based Enhanced Dual Mode Encryption

We first review the dual mode encryption based on Quadratic Residuosity (QR) assump­

tion in [PVW08], then we show this scheme is actually an enhanced dual mode encryption

www.manaraa.com

58

crsSyS, crscom

Sender
X0,Xi

crsr

V

s <- G

V

T
crstmp<-r + s r
crsot 4- (

X0,Xi
crs ot

s
for b = 0,1

fet.Cb) <- Enc(craot,pfe,6,a;6)

commit

open

pk

Vo,yi

^£3
a

±
Receiver

r, crscom

I
r^G

c

c
erst Hmp <-r + s
c r s o t <~ (crsgys, crs tmp)

crs o t ;

(pk,sk) <— KG(crsa ,<r) R

xa «- Dec(crsot,pfc,5A:,j/tr)

X,

Figure 3.8: Generic semi-adaptively secure OT protocol. Here [C_

open

V and

C Vj denote the commit and the open stages of an adaptive UC-secure commit-

is the PVW ment protocol based on CRS crscom. crssys is the system CRS, and R

protocol (Figure 3.7), but based on our enhanced dual-mode encryption scheme.

www.manaraa.com

59

as defined in Definition 3.5.2 under the same assumption.

The QR-based dual mode encryption in [PVW08] is based on a variant of Cocks' en­

cryption scheme [CocOl] as follows. For N € HSf, let]JW denote the set of all x £ Z N with

Jacobi symbol +1 , and QKJV c J^ denote the set of all quadratic residues in X*N, and (jj)

denote the Jacobi symbol of t in X*N. The message space is {±1}.

- The key generation algorithm (pk,sk) <— CocKG(lA): Randomly select two A-bit primes

p and q and set N <— pq. Randomly select r <— Z.*N and set y <— r2. Set pk <— (N,y), and

sk <— r. Output (pk,sk).

— The encryption algorithm (c,s) <— CocEnc(pfc, ra): Parse pk as (N,y). Randomly select

$
s <— Z ^ such that (jj) = m, and compute c <— s +y/s. Output (c,s).

— The decryption algorithm m <— CocDec(sfc, c): Parse sk as r. Compute the Jacobi symbol

of c + 2r, i.e., m *— i^1)- Output m.

We next present the enhanced dual mode cryptosystem which is based on the above

scheme.

- The parameter generation algorithm (crs, r) <— PG(1A, y.) for the messy mode and the

decryption mode are presented as follows where \i e (0,1}, crs = {$N>crssys'crstmp)> an<i

"*- = VTsys» ^ tmpj-

* (JN'crssys'Tsys) <— PGsys(lA): Randomly select two A-bit primes p and q and set

N <- pq. Set crssys <- N and Tsys «- (p,q). Output {^N,crssys, Tsys).

$

* (crs t m p ,T t m p)<- PG t m p(0JN ,crs s y s ,T s y s) : Randomly select y <- JN \QIRN . Set crs t m p <-

y and T <- 0. Output (crs tmp ,T tmp).

www.manaraa.com

60

* (crstmp>Ttmp)*- PCtrnpll'lN/CSsys'Tsys): Randomly select s <- Z ^ and set y <—s2 mod

N . Set crstmp <- y and r t m p <- s. Output (crs tmp

- The key generation algorithm (pk,sk)<— KG(crs,<x):

Parse the crs as (ftN,N,y). Randomly select r <— Z ^ , set sk <— r and pA: <— r2/ya.

Output (pk,sk).

- The encryption algorithm (c, C) <— E.nc(crs,pk,b,m):

Parse the crs as ($N,N,y). Set pA:b <— (N,pk-yb). Compute (c,C) <— CocEnc(p/cfc,m).

Output (c,C)-

- The decryption algorithm m <— Dec(crs,pfc,s/c,c):

Parse the crs as (J^ ,N,y) . Compute m <— CocDec(sA:,c). Output m.

- The messy branch identification algorithm p <— Idf(crs, z,pk):

Parse the crs as (Jjv,JV,y) where y € J w \ QK^. Parse the trapdoor T as (p,q) where

N = pq. li pk e QIRN, then set p <— 1; otherwise set p <— 0. Output p.

- The fake encryption algorithm (c,co) <— Enc(crs, x,pk,p):

Parse the crs as (JN,IV,y) where y € J N \ QJR^j. Parse the trapdoor T as (p, q) where

N = pq. Set y' <— pA: • yP and set pfc <— (N,y'); note that y' e J N \ Q E N . Compute

(c, Co) <— CocEnc(p/c , m), i.e., and compute c <— Co + y'/Co- Based on the messy char­

acterization explored in Lemma 6.1 in [PVW08], compute Ci>C2»C3 such that Ci =

Co mod p and Ci = y'/Co mod g, C2 = y'/Co m o d P a n ^ C2 = Co m o d <?> C3 = y'/Co m o d P

and C3 = y'/Co mod g; note that two of (^-) are +1, and the other two are - 1 . Set

w <- (Co.Ci-C2'C3)- Output (c,a>).

- The internal state reconstruction algorithm C <— Equiv(crs, x,pk, p, c, co, m):

www.manaraa.com

61

Parse the crs as ($N,N,y) where y 6 j j^ \ ©JRN- Parse the trapdoor T as (p,q) where

N - pq. Set C <— C; where C, is from co such that (^) = w. Output C-

- (pk,sk0,ski) <— EquivKey(crs,r):

Parse crs as (J N , N , J ;) and the trapdoor r as s where y = s2 mod AT and AT = pq.

Randomly select r <— Z ^ , set sky <— r -s h for b e {0,1}, and p/c <— r2. Output {pk,ska,ski).

Theorem 3.7.1. Under the quadratic residuosity assumption, the above scheme is an enhanced

dual mode encryption as defined in Definition 3.5.2.

Proof sketch. The proof is very similar to that of Theorem 6.2 in [PVW08]. The first two

properties can be argued directly based on their proof. The fourth property can also be

argued based on their proof because in the key generation, the randomness used by the

KEYGEN is exactly the decryption information which is included in decryption key sk. For

the third property, besides their argument, we need further to show for all m e {±1}, the

distribution of (c, Q from the honest encryption algorithm is identical to that produced by

the fake encryption and reconstruction algorithms.

$
For m - +1 , the former distribution can be written as {(c,C)|C <— J N > C - C +y/C}', the

$
latter distribution can be written as {(c,Co)lCo *- I N > C = Co + y/Co = Ci +y/Ci»Ci = Co m ° d

$
p,£j = y/Z,Q mod q) which can be further rewritten as {(c, Co)lCo ^~ I N » C - Co + y/Cob s o the

two distribution are identical.

$
For m = - 1 , the former distribution can be written as {(c,C)|C <— Z ^ \ J N , c = 1,+y/Q; the

$
latter distribution can be written as {(c,Ci)|Co <"" J N > C = Co + y/Co - Ci + y/Ci»Ci = Co m ° d

$
p,Ci = y/Co m ° d <?} which can be further rewritten as {(c,Ci)lCo <- J N < C - Co + y/Co = Ci +

y/Ci.Ci = Co mod p, (&) = (*)(§?)}; note that (fr) = (*)(&) = - 1 • (&) since y 6 J N \ QK N ;

www.manaraa.com

62

given Co *— JN> w e c a n have Ci *— %*N \3N> therefore the latter distribution can be rewritten

as {(c,Ci)|Ci ^ ZTN \yN,c = U + y/U = Ci +y/Ci,Ci = Co m o d p , (^) = (*)(&)}, and then

$
{(c, Ci)|Ci <— 2 ^ \ JJV-C = Ci +y/Ci} which is identical to the former distribution.

Together we show the two distributions are identical, which concludes that the third

property is also satisfied. This completes the proof. •

3.7.2 BitOT

We now apply our compiler from section 3.4 to the protocol in Figure 3.8, to immediately

obtain an efficient adaptively secure OT protocol in the UC framework.

Corollary 3.7.2. Assume that the DDH, QR, and DCR assumptions hold. Then there exists

an adaptively secure protocol that UC-realizes the bit-OT functionality J\jT in the J^Rs-hybrid

world, running in (expected) constant number of rounds and using (expected) constant number

of public-key operations.

Justification for the assumptions is as follows: efficient adaptive UC commitments can

be realized in the CRS model under the DCR assumption [DN02], non-committing and

somewhat non-committing encryption can be constructed under DDH ([DNOO] and Sec­

tion 3.2, respectively), while enhanced dual-model encryption exists under the QR as­

sumption ([PVW08] and Section 3.6).

3.8 DDH-based Concrete Construction for Bit and String OT

Here we give a high-level description of adaptively-secure OT constructions from the

DDH-based protocol in [PVW08]. We first review the original DDH-based OT construe-

file:///Jjv-c

www.manaraa.com

63

tion from PVW. The we show how to use it to construct adaptively secure bit OT and finally

String OT.

3.8.1 Dual Mode Encryption Based on DDH

We assume that the parties agree to work in the DDH group G of order p where p is chosen

based on the security parameter.

- The common random string consists of four group elements crs — (go,ho,gi,hi).

* PG(1A,0). In messy mode the four group elements are uniformly and independently

distributed. They are generated by choosing go,gi randomly in G, (XQ,X]) randomly

in Z p and setting HQ - gx°,hi = gXl. The messy trapdoor is t = (x0,Xi). We output

(crs = (g0,h0,gvhl),t).

*PG(1 A , 1) In decryption mode the four group elements form a DDH tuple: g0 is

chosen randomly in G and two values x,y are chosen randomly in Z„ . We set

gi = gci'^o ~ So'^i — S\ = go*'• ^ n e decryption trapdoor is t = y. We output

<crs = {g0,h0,gi,hi)tt).

The main difference between messy mode and decryption mode is that in decryption

mode, Dlog„o(h0) = Dlog„ (hi) while in messy mode this happens with negligible prob­

ability.

- The key generation algorithm (pk,sk) *— KG(crs,a):

Given a bit a e {0,1}, choose r <— Z p . Let g - gr
a,h = hr

a. Set pk = (g,h), sk = r.

Output (pk.sk).

- The encryption algorithm (c, C) *- Enc(crs, pk, b, m):

http://pk.sk

www.manaraa.com

64

Given a public key pk = (g,h), a message m and a bit b, choose s, t <— Z p and set

u :=gjjfc£ v :- gshl. Set the ciphertext c <— (w,v • m), and C <— (s, £). Output (c,b).

— The decryption algorithm m <— Dec(crs,pfc,s/c,c):

Given a secret key sk = r with label c and a ciphertext c = (CQ,C\) with label b — a,

output m' — cr
Q/c\.

— The messy branch identification algorithm e <— \df(crs, r,pk):

Given the messy trapdoor t — [XQ,X]) and a public key pk — (g,h) test for h = g£. If

the test passes, label the key as a left-key by outputting e — 0. Otherwise label it as a

right key by outputt ing e = 1.

— (pfc,sk0,ski) <" EquivKey(crs, r):

Given the decryption trapdoor r = y, we can compute a key pair (pk, sk) which can

be used to decrypt both left and right decryptions. To do so compute (g, h) = (g^,^),

where r0 is chosen randomly, and then compute rx = r/y so that (g, h) - (g[x, h[l). Output

(pk,sk - (r0, rj)). Later, we can call the Dec procedure with secret keys r0 or r\ to

decrypt both left and right ciphertexts.

3.8.2 BitOT

There is one main problem in the above scheme when it comes to adaptive security. When

the key and the encryption type do not match in messy mode (i.e. a left encryption under

a right key) the encryption is statistically hiding. However, for adaptive security, the sim­

ulator also needs to be able to generate a valid looking ciphertext of this form and later

be able to explain it as a valid encryption of any specified message. Unfortunately, in the

www.manaraa.com

65

current scheme, this might not be possible since the encryption can be binding even for a

simulator who knows the messy trapdoor.

To see this in detail, recall that the receiver can choose an arbitrary public key g,h. If

h * gx°, then left encryption is statistically hiding since u - g^h^ = gs
Q

+ Xa,v - gshf = g0 '

for some r, x[=£ XQ and hence u,v are statistically independent. However, for any left

ciphertext (CQ,CI), if the simulator can explain the ciphertext as an encryption of either

one of two different messages m * m', then the simulator can compute s,t,s',t' such that

gshtm - Cy - gs h* m'. This presents two problems. Firstly, the simulator must know

Dlog„(/2) but g,h can be chosen arbitrarily by the receiver. Secondly, the simulator must

know Dlog„(m) but m is also chosen arbitrarily without input from the simulator.

The second problem is the easier of the two to solve - we simply shrink the message

space of the encryption scheme to 1 bit: to encrypt a bit e 6 {0,1} we simply use the original

scheme on the message m = ge € {l,g}. This way, the simulator knows Dlog„(m) for both

eligible messages.

The first problem is a little trickier, but we notice that the honest receiver always

chooses g,h such that Dlog„(h) 6 {x0.xi}- Somehow we need to disallow the cheating re­

ceiver from choosing arbitrary g,h. To do so, we want the receiver to prove that either

Dlog„(/i) = Dlogg0(/i0) or D[ogg(h) - Dlog^(/ii). Actually, we can make the receiver prove

an equivalent statement that either Dloggo(g) = Dlogj,0(/i) or Dlog^(g) - Dlogj^fc). We take

advantage of the fact that there are efficient E protocols for the equality of discrete logs.

Actually we need the Sigma protocol to be non-erasure in the sense that if the receiver,

after generating the transcript with the sender, is corrupted, the simulator can "explain"

www.manaraa.com

66

such Sigma protocol transcript. Further the Sigma protocol is required to defend against a

dishonest verifier; we can use a trick by Damgaard [DamOO] to transform a Sigma protocol

against honest verifier into one against dishonest verifier by using an equivocal commit­

ment to "hide" the first move of the Sigma protocol until receiving the challenge from the

verifier. Please refer to [Nie03, Section 2.9] and [Nie05] for more details. The protocol

therefore becomes:

— Let crs = {g0,g1,h0,h1).

— The receiver chooses a key pk — (g,h),sk using the key generation algorithm on his bit

a. In addition the receive computes the first message a of a E-protocol.

— The sender sends a challenge c.

— The receiver sends a response z.

— The sender verifies that (a,c,z) is accepting and, if so, computes a left encryption of

m0 = ge° for the left message e0 € {0,1} and a right encryption of m\ - gei for the right

message e0 € {0,1} under pk.

The above yields a semi-adaptively secure bit-OT protocol. We now apply our compiler

from Section 3.4, and use somewhat non-committing encryption to protect the protocol

transcripts to obtain a very efficient adaptively secure bit OT based on the DDH assump­

tion. We further remark that short (logarithmic size) string OT can be similarly obtained.

3.8.3 String OT

The above approach for semi-adaptively secure bit OT based on DDH can be efficiently

extended to obtain semi-adaptively secure string OT, for larger strings of n bits. There

www.manaraa.com

67

Figure 3.9: DDH-based fully adaptively-secure String-OT protocol. The protocol consists

of two stages. In the first stage, the receiver sends an equivocal commitment on its input

a; for the purpose of giving a concrete example, we here instantiate the equivocal commit­

ment with Peterson commitment c = Commit(a) = g1hY
h. In the second stage, the sender

and the receiver run n copies of fully adaptively-secure bit-OTs explored in Section G.l

but with the relation updated in the Sigma protocol, i.e., in z'-th bit-OT, S' <==> R' , the

relation is updated into R1 = {(c,pfc',crsj)t),(r
,',>/)|(gi = {g^ A h' = (h^"! A c = hi) V (g' =

{glf^AV = (h\)^Ac = gAhy
A)} where crs'ot = (g^h^glh^G) is obtained by S ; and R{ after

coin tossing phase, and pk' is in the first move in transferring phase. Further G = (G,p,gt)

is a cyclic group with prime order p and generator g„ and go>h'0,g[,h\,gA,hA e G.

www.manaraa.com

68

are to issues that we must face in order to convert the bit-OT scheme into a string-OT

scheme. Firstly, we cannot simply increase the message space to all of Z p since that would

not allow for efficient equivocation. Secondly, we cannot use our standard somewhat non-

committing compilation since such a compiler is only efficient for small domains/ranges.

Here we take a detour; we simply "bundle" n copies of bit OT into a string OT for n

bits. This can be done as follows. First the receiver computes an equivocal commitment

of his bit a. Then, the sender and the receiver run n copies of bit-OTs in parallel, and

the Sigma protocol guarantees not only that each "public key" pk chosen by the receiver is

well-formed, but also that all public keys are based on same bit a, which matches the com­

mitment. Using Pedersen commitments, we have efficient E-protocols for this language.

This already gets us an adaptive OT protocol assuming secure channels. However,

we now show how to efficiently use somewhat non-committing encryption to improve

computational efficiency. The idea is that each of the seperate bit-OT protocols is executed

over its own "^-equivocal channel" (essentially a fresh an independent channel for SNCE).

It is easy to show that this still allows the simulator to simulate the "initial corruption".

Moreover, we notice that it is very efficient to set-up n separate ^-SNCE channels using

(strict) 0(n) public key operations and strict constant number of rounds.3 This results in

the parameters mentioned in Theorem 3.8.1 below.

Theorem 3.8.1. Assume that the DDH and DCR assumptions hold. Then there exists an

adoptively secure protocol that UC-realizes the string-OT functionality J^j in the TcRS'hybrid

3Essentially, we need to use fully non-committing encryption to send n indices in the range [l,£]- We
can do so with the above efficiency assuming n = Q(A). Recall that previously, for NCE of a single bit,
we did not wish to sacrifice O(A) operations and thus were forced to use expected constant number of
rounds/operations.

www.manaraa.com

69

world, and can transfer an n-bit string in (strict) constant number of rounds and using (strict)

0(n) public-key operations.

3.9 Delayed Proofs

3.9.1 Proof of Theorem 3.2.4

We need to show that our protocol in Figure 3.4 realizes the J^c functionality described in

Definition 3.2.3. This functionality is parametrized by two oracles: the message-ignoring

oracle TZ and the message-processing oracle M. We define these oracles based on our

actual protocol construction. In essence the oracle M. corresponds to the actions of the

parties for the index i chosen during channel setup, while the oracle TZ corresponds to all

other indices in {!,...,£). In particular:

• On input (C H S E T U P J , S ^) , the oracle M samples (pk.sk) ^- KG(1A), K +- KGsym(),

(C,£) ^ Enc(pk,K). The oracle TZ samples (pk,Q «- KG*(1A), (C,rj)«- Enc*(pA:).

• On input (SEND, I,sid, m), the oracle M samples £ <— Enc^ym(m). The oracle TZ samples

E randomly.

We must first show that the oracles M and TZ are indistinguishable. We do so using a

hybrid argument.

1. We start with the message-processing oracle M.

2. We now modify the oracle so that, for all SEND commands, it chooses the symmetric-

key ciphertext E randomly instead of computing E <— Enc^ym(m). This modification

http://pk.sk

www.manaraa.com

70

is indistinguishable from the initial oracle since ciphertexts produced by the sym­

metric key scheme are indistinguishable from random ciphertexts.

3. We now modify the oracle from step 2 so that, for all CHSETUP commands, instead of

computing (C,E.) <— Enc(pk,K), it computes (C,C) <— Enc*(p/c). This oracle is indistin­

guishable from that of step 2 by the oblivious ciphertext generation property.

4. Lastly we modify the oracle from step 3 so that, for CHSETUP commands, instead of

computing (pk,sk) <— KG(1A) it computes (pk,E,) <— KG*(1A). This oracle is indistin­

guishable from that of step 3 by the oblivious key generation property.

The last step yields the message-ignoring oracle TZ. Hence M and TZ are computationally

indistinguishable.

The two oracle M, 1Z now define the complete non-information oracle Me and hence

the ^-equivocal secure channel functionality JQ • We must now describe an ideal-world

simulation of our £-NCE protocol.

The simulation while both parties are honest is actually very simple since the non-

information oracle M actually runs the protocol and hence there is little that our simulator

S must do! Essentially, to simulate the secure transfer of the index i, the simulator simply

sends the length of the message (which is known since £ is known) to the adversary A.

To simulate the rest of the channel setup phase and also any encryption commands, the

simulator S just passes all information from N to the adversary A.

The only difficult part is simulating the first corruption. In the ideal world, the sim­

ulator is only given the internal state of the single machine Mi which is the message-

www.manaraa.com

71

processing oracles. In the real-world the state of the corrupted party also includes the

randomness for all of the obliviously-generated public keys and ciphertexts (i.e. the inter­

nal state of all of the message-ignoring oracles). But the simulator can simulate this easily

by using the ciphertext-faking and key-faking algorithms. In other words, for each sym­

metric key ciphertext E produced by an oracle A/",-, the simulator simply sets the random

coins of the sender as E (since it is just a uniformly random value). Moreover, for each

public key ciphertext C, the simulator sets the internal state of its sender as Enc*(p/c, C).

Lastly for each public key pk, the simulator sets the internal state of its sender as KG*(pk).

We can view the real world protocol as a series of the same £ oracles N\,...,Ne where

A/j (for the transferred index i) is the above described message-processing oracle and the

rest are message-ignoring oracles. Hence the only difference between the real world and

the ideal world is how the random coins of the corrupted party for its message-ignoring

oracles are generated. In the real-world the adversary gets the actual coins while in the

ideal-world the adversary gets coins produced by the faking algorithms. Let us denote the

worlds by tuples showing which oracles are running for all indices other than i (i.e. either

message-processing or messsage-ignoring) and how the state is generated (i.e. actual state,

faked state). So the real world can be represented as a tuple (message-ignoring, actual).

But, by the properties of the simulatable public key system, this is indistinguishable from

the world (message-processing, faked). Lastly, since the fake algorithms do not use any

secrets, and message-ignoring oracles are indistinguishable from message processing ora­

cles, the world (message-processing, faked) is indistinguishable from (message-ignoring,

faked). But this is the ideal world, and hence we have shown that the real-world is indis-

www.manaraa.com

72

tinguishable from the ideal world.

3.9.2 Proof of Theorem 3.4.1

By assumption, the underlying protocol n is well-structured and there is a simulator <Ssemi

which is setup-adaptive and input-preserving, such that n realizes the two-party function­

ality -?spE against a second-corruption adaptive adversary. In particular for any second-

corruption adaptive adversary Asec there is <Ssemi such that for any environment Zsec

R E A L „ , ^ 2 s e c - I D E A L /

We now construct a simulator S for the protocol n' that uses fully non-committing secure

channels. The simulator S runs an internal copy of the (fully adaptive) adversary A at­

tacking the protocol n'. We can assume, without loss of generality, that the adversary A is

just the "dummy" adversary which only follows instructions from the environment Z. We

define the simulation in terms of the following four stages:

I. The setup phase while both parties are honest.

II. The communication phase while both parties are honest.

III. The first corruption.

IV. Execution after the first corruption.

I. The setup phase while both parties are honest. First our simulator S initializes a copy

of the semi-adaptive simulator <Ssemi = (^sem^'^semi)- F° r stage (I), the entire setup phase

of the protocol n is simulated by 5semiP which is oblivious of which parties are corrupted

www.manaraa.com

73

II. The communication phase while both parties are honest. The main idea behind this

simulation is that the real-world adversary does not see much at this time - just the mes­

sage lengths and identities of the sender and receiver. However, because the protocol n

is well-structured, these are known ahead of time. Hence the simulator S can simulate

this phase by simply forwarding this publicly known data. Recall that the communication

phase proceeds in rounds i — 0,...,n where in each round i the party b, sends a message

of length k{ to party 1 - b,. The party b0 is the initiator, and afterwards h,- = 1 — &,-_i. The

simulator S proceeds with "rounds" i = \,...,n and in each round i sends the message

(SEND,sid,P},,kj) to A on behalf of J^Q. We call this the dummy execution since the simula­

tor <S does not run any protocol behind the scenes but only passes message lengths to Z.

The adversary A may corrupt a party at any point during this interaction.

III. The first corruption. Assume that the first corruption is that of the party Pfirst. Then

the simulator S gets the entire content of the ideal-world view of Pfirst including its input

Xfirst from the environment and (possible) outputs yfirst from ^ p E depending on the point

at which the corruption occurs.

The simulator S then produces an imagined execution between P0 and Pj as follows. It

constructs a machine Z^£ which is a (new) environment that corrupts Pfirst immediately

after the setup phase but honestly uses the inputs specified by Z to run the protocol n on

behalf of Pfjrst. The simulator S then activates the machine S^™, (passing it any output

from <SsemiP) and runs the simulation by S^^ for the environment Z^f (the adversary A

is always dummy w.l.o.g. and hence we do not specify it). It runs this simulation, for as

many rounds of the communication phase as occurred before Pf|rst was corrupted.

www.manaraa.com

74

In addition, S acts as the ideal functionality Jgm for <S^i- ^ ^semi attempts to give

input to the ideal functionality then, since S^emi is input-preserving, this input is Xfjrst

and S just ignores this. If S^emi asks for output (at a point after both inputs have been

submitted) then S passes it the actual output yfirst on behalf of ^spE-

Once -Zgel1 reaches the point where the environment Z corrupted Pf,rst, the simulator

S takes the internal state of Zsec (i-e- t n e randomness used to run the protocol on behalf

of the party Pfjrst and the view of the protocol execution) and sets it as the internal state

of Pfirst to be given to the actual environment Z. This corresponds to patching the dummy

execution by claiming that the imagined execution took place over the secure channel.

IV. Execution after the first corruption. After the first corruption, the simulator S^emi

is left to simulate the execution without interference.

Indistinguishability of Simulation: Now we need to argue the indistinguishability of

the simulation. Intuitively, this follows simply from the fact that <Ssemi can simulate a

second-corruption adaptive adversary. In the following arguments we assume that the en­

vironment Z corrupts some party at some point. If not then in the ideal world as well as

the real world, the environment Z only sees the lengths of the messages defined by the pro­

tocol n so the real world and ideal world are indistinguishable. If a corruption does occur

at some point, then we use the following hybrid argument for a series of indistinguishable

games.

Game 1 - The Ideal World: We define Game 1 to be IDEAL / - that is the ideal-world
-/SFE>'-''^

simulation with the environment Z and the simulator S (as described above) inter-

www.manaraa.com

75

acting with the ideal functionality T.

Game 2 - Second Corruption Adaptive Ideal World: In the simulation, the imagined ex­

ecution is generated after the first party is corrupted ex post facto. We now define a

new execution in which the imagined execution is the one that executes all along.

More precisely, we define an environment Zsec, which runs an internal copy of Z.

However Zsec chooses a bit b <— {0,1} randomly and corrupts the party Pb prior to

protocol execution. The environment Zsec gets the input xb for Pb from Z, and runs

a the protocol for Pb honestly using the input xb and randomness rb. In addition Z^ec

passes the message lengths, and identities of sender and receiver to Z.

If Z requests the corruption of a party Pfirst then, if first * b the environment Zsec

gives the output 0 and quits. Else, if first = b, give the randomness rb and the actual

messages produced and received on behalf of the party Pb to the environment Z.

From this point on, Zsec just executes Z (allowing Z to produce the final output).

Now we consider the ideal world game with the environment Zsec and the simulator

^semi- We note that, if b = first, then this is a syntactical re-writing of IDEAL^- SfZ

where the "imagined execution" produced by <S is actually being run by the environ­

ment Z^ec. Let G be an event that this is the case (i.e. first = b). Then conditioned on

G, Game 2 matches Game 1.

{ IDEAL^^} * {IDEAL^5semi>Zsec | G}

Game 3 - Second Corruption adaptive Real World: We now use the semi-adaptive secu­

rity of the protocol n (as simulated by <Ssemi) to switch from the ideal-world (with

www.manaraa.com

76

environment Zsec and simulator <S s e m i)
t o the real-world (with environment Zsec and

a dummy-adversary .4). In particular we claim:

{ I D E A L ^ ^ | G) k {REALn,AZsec | G}

To see this, we note that the event G occurs with probability 1/2 (since the view of Z

is independent of the choice of b by Zsec). Also, if G does not occur, then the output

of both of games is 0. Assume that our claim does not hold, and so

P r [I D E A L ^ 5 _ i A e c = 1 | G] -Pr [REAL n ^ Z s e c = 1 | G] > e

for some e which is not negligible. Then

Pr[IDEAL^5 s e m l A e c = l] -Pr[REAL n < X Z M c = 1]

= Pr[G](Pr[IDEAL^5semi^sec = 1 | G] - Pr[REALn>X2sec = 1 \G])

+ Pr[^G](Pr[IDEAL^5semi(2sec = 1 | -G]-Pr[REAL„, A Z s e c = 1 |-,G])

= Pr[G](Pr[IDEAL^,5s8mi,^ec = 1 | G] -P r [REAL K f ^ M c = 1 |G])

= e/2

where the summand in the 3rd line is 0 since, conditioned on ->G, Zsec always out­

puts 0. This contradicts the semi-adaptive security of n and hence out claim follows.

Game 4 - Real World: Now we notice that,

{REALHi>u J G } « R E A L K V U

This follows simply from the fact that, conditioned on G the left-hand side is sim­

ply a syntactic rewriting of the right-hand side, where the environment Z runs the

protocol on behalf of Pb and passes the state of P), to Z.

www.manaraa.com

77

By the hybrid argument, we therefore get

IDEAL^s^ « REAL„,<>Uj

which completes the proof.

3.9.3 Proof Sketch of Theorem 3.4.2

The simulation and the proof are similar to that of Theorem 3.4.1 as presented above. The

main difference is that S needs to set-up £ possibilities for how to explain the communica­

tion over the ^-non-committing channel. Formally, the simulator S simulates stage (I) as

in the proof of Theorem 3.4.1.

Then for stage (II), the simulator S creates £ copies of the simulators 5 ^ , and creates £

"honest-environments" ITMs Z\ec(x,y): one (environment, simulator) pair for each choice

of party b, its input x € Xj, and its output y G Yj. We use the tuples (b,x,y) as indices and

denote the (environment, simulator) pairs by

{(Ssem'"Zse^X'yn\be{0,l},xeXb,yeYb

Each "honest-environment" Z\ec{x,y) runs the code of the party Pj as described by the

protocol n using input x. In addition, if <Ssec needs to be given output on behalf of ^ p E ,

it is given y. To simulate the communication, S runs all £ simulations. It then initiates

£ message-processing oracles «M,- and randomly associates each i with an environment

Z^ec(x,y). On each tuple of messages produced by the £ (environment,simulator) pairs,

these messages are given to the appropriate oracles and the output of the oracles is then

used as side-channel information given by S to Z. This is essentially a slightly more com-

www.manaraa.com

78

plicated version of the dummy communication phase used in the simulation for Theo­

rem 3.4.1.

For stage (III), when a party Pfjrst is corrupted, the simulator 5 learns the input x and

(possibly) output y of the party Pfjrst. It then explain the communication in stage II, by

providing the internal state of the oracle corresponding to the (environment, simulator)

pair for environment Z^££(x,y) (if no input or output has been received then S can choose

one of few consistent options for which environment to open). It passes the internal state

of Z^lt(x,y) (i.e. its random coins and view of the protocol execution) to Z on behalf of

•ffirsf

For stage (IV), the simulator S continues the simulation by using the copy of <Ssemi

chosen in the above step.

Indistinguishability of Simulation: This is similar to the proof of Theorem 3.4.1 and

proceeds as a series of games argument.

Game 1 - The Ideal World: We define Game 1 to be IDEAL / c - that is the ideal-world

simulation with the environment Z and the simulator S (as described above) inter­

acting with the ideal functionality T(.

Game 2 - Second Corruption Adaptive Ideal World: This is similar to Game 2 of the proof

of Theorem 3.4.1. The one difference is that, for stage (II), the environment Zsec now

produces the side-information for Z by using a message-processing oracle to encrypt

the actual protocol execution by Pj,, and £-\ message-ignoring oracles for the rest.

Again, we define the event G as in Game 2 of the proof for Theorem 3.4.1. It is easy

www.manaraa.com

79

to see that:

{ I D E A L ^ j } * {IDEAL^5semi,Zsec | G}

Indeed, the two worlds are syntactical re-writings of each other, in the sense that the

left hand side has Z being simulated by S which runs a conversation Z s e c and Ssemi

while, on the right hand side, Zsec is running the whole time and is simulated by

iSsemi. The one difference is that, in Game 1, there are £ message-processing oracles,

while in Game 2, there is only one and the rest are message-ignoring. However, by

assumption, these are indistinguishable.

Game 3 - Second Corruption adaptive Real World: We now use the second-corruption

adaptive security of the protocol n (as simulated by <Ssemi) to switch from the ideal-

world to the real-world. In particular we get:

{IDEAL^5semi,Zsec | G) L {REALn,AZsec | G}

The argument is the same as in the proof of Theorem 3.4.1.

Game 4 - Real World: Now we claim that,

{REALH M > Z M C |G}4REAL„^Z

This follows simply from the fact that, conditioned on G the left-hand side is sim­

ply a syntactic rewriting of the right-hand side, where the environment Z runs the

protocol on behalf of Pb and passes the state of P;, to Z.

By the hybrid argument, we therefore get

IDEALjr,5(ij « REALnVt jZ

www.manaraa.com

80

which completes the proof.

3.9.4 Proof of Theorem 3.6.2

To finish the proof, we first need to construct a simulator such that there is no PPT environ­

ment Z which follows a second-corruption adaptive adversarial strategy can distinguish

the execution with the adversary A and OT protocol in the J^R S-hybrid world (see Fig­

ure 3.8), and the execution with the setup-adaptive simulator S and ideal functionality

J-QT- We further need to show the constructed simulator is input preserving.

We give the construction of the simulator. Note that the underlying commitment is an

adaptively secure commitment; so the simulator can take advantage of the extractability

and equivocality of the UC commitment to set up crsot in the coins tossing stage based

on the mode information. The simulation is very similar to that in [PVW08]. But now

the underlying dual mode encryption satisfies an enhanced definition, and the simulator

has more power to handle the second-corruption adaptive attacks from the adversaries;

the simulator can use the Enc and Equiv algorithms to handle a further corruption of the

sender if the receiver is initially corrupted, and use EquivKey algorithm to handle a further

corruption of the receiver if the sender is initially corrupted.

- Simulating the communication with Z. The simulator S simulates the adversary A

internally which can interact with the external environment Z, i.e., whenever A and Z

exchange messages with each other, the simulator will forward such messages between

them. Further whenever A corrupts a party, S corrupts the corresponding dummy

party.

www.manaraa.com

81

- Trusted setup. Note that our S should be a setup-adaptive simulator which includes

two parts <SsetuP and <Sprot. Here we give the construction of <SsetuP. The simulator

computes the CRS in the following way: generate (crscom, rcom) for the UC commitment,

and generate (G,crssys, rsys) <— PG sys(lA), and further set crscom and crssys as crs, and set

the corresponding trapdoor Tcom and rsys as the trapdoor T. When parties query JQRS'

return (CRS,sid,crs). Note that the CRS can be learned by A even no party is corrupted,

and no mode information has been committed by the simulator in the trusted setup

stage. In next several items, we construct the other part of the simulator, i.e., <Sprot.

— Simulation of the initially corrupted receiver case. Given the adversary A is the

second-corruption adaptive adversary, here we consider the case that the receiver is

corrupted initially while the sender is honest, and the sender could be further cor­

rupted at any point in the communication stage. The simulator chooses the messy

mode and simulates the sender as follows.

First, the simulator generates (crs tmp , Ttmp) <— PG tmp(0, G,crs sys ,r sys), where (G,crssys,

Tsys) 1S generated in the trusted setup, and now the messy trapdoor ro t = (Tsys, Ttmp)

and the CRS crsot - (crssys,crstmp); then in the coin-tossing phase, the simulator com­

putes s such that crstmp — r + s, where r is extracted from the commitment value

from a corrupted receiver. Further, in the transfer phase, the simulator can obtain

the sender's input X_p for the non-messy branch 1 - p by querying the functional­

ity JQJ with the input bit 1 - p, i.e., the simulator in the name of corrupted receiver

sends (Receiver,sid, 1 - p) to the functionality and obtain (Output,sid,Xi-p) from the

functionality; note that here p is extracted by using the messy trapdoor Tot from the

www.manaraa.com

82

pk computed by the corrupted receiver; then the simulator computes y\-p honestly

for Xi_p by using randomly selected Ci-P> a n d computes yp by running the fake en­

cryption algorithm, i.e., (yp,cop) <— Enc(crsot, rot,pk,p). Later if the sender is corrupted,

then the simulator based on the learned xp runs the internal state reconstruction al­

gorithm to compute CP; i-e., Cp <— Equiv(crsot,Tot,pfc,p,yp,a>p,Xp), and returns (Co>Ci) as

the sender's internals.

— Simulation of the initially corrupted sender case. Here we consider the case that

the sender is corrupted initially while the receiver is honest, and the receiver could be

further corrupted at any point in the communication stage. The simulator chooses the

decryption mode and simulates the receiver as follows.

First, in the coin-tossing phase, the simulator computes a fake commitment value

based on (crscom, Tcom); then the simulator generates (crstmp, r t m p) <— PG t m p(l , G,crssys, Tsys),

where (G,crsSyS, rsys) is previously generated in the trusted setup, now the decryption

trapdoor Tot = (Tsys, Ttmp) and the CRS crsot = (crsSyS,crstmp); after obtaining s, the

simulator computes r such that crstmp = r + s, where s is received from a corrupted

sender; later the simulator equivocates the previous fake commitment value into r.

Further, in the transfer part, the simulator runs (pk,skQ,ski) <— EquivKey(crsot,Tot). Af­

ter receiving ciphertexts {yo,yi)> the simulator decrypts them into (x0,xi), e.g., x\, <—

Dec(crsoVpk,sk},,yi)) for b = 0,1. Then S sends (Sender,sid,{x0,x{)) to the functionality

TQI. Later if the receiver is corrupted the simulator, based on the learned a, reveals

ska as the receiver's internals.

- Simulation of the remaining cases. If both parties are corrupted, the simulator just

www.manaraa.com

83

follows the internal ^4's instructions to simulate the transcripts between the two cor­

rupted parties. If both parties are hones then the simulator runs two parties honestly

based on randomly selected inputs.

We next need to argue that no PPT environment can distinguish with non-negligible

probability the interaction with the protocol in the CRS hybrid world and second-corruption

adaptive adversary A, or with the functionality and simulator <S described above.

HI This is the CRS hybrid world.

H2 Based on HI , we change the CRS setup, and run (G,crsSyS,rsys) <— PGsys(lA). Now

trapdoor rsys is known.

HI and H2 are indistinguishable given that the system CRS are identically distributed

and Tsys is not used yet.

H3 Based on H2, we change the CRS setup, generate (crscom,rcom) for the UC commit­

ment, and the trapdoor Tcom is known. If it is the case that the sender is honest but

the receiver is initially corrupted, we do the following further modification. We gen­

erate (crs tmp ,T tmp) <- PG tmp(0,G,crssys,Tsys), where (G,crssys,Tsys) is, as generated in

HI . Next in the coin-tossing phase, compute s such that crstmp = r + s, where r is

extracted from the commitment transcripts from the corrupted receiver. Now the

messy trapdoor ro t = (xsys, r t m p) and the CRS crsot = (crssys,crstmp). If later receive a

corruption command from the adversary that an honest sender is further corrupted,

just reveal its input to the adversary.

www.manaraa.com

84

H2 and H3 are indistinguishable given that the underlying commitment is UC se­

cure and that the mode indistinguishability of the underlying enhanced dual mode

encryption.

H4 Based on H3, if it is the case that the sender is honest but the receiver is initially

corrupted, we do the following modification. Instead of honestly producing the ci-

phertexts (yo,y\) for both branches, we extract the messy branch number and use the

faking encryption to produce the ciphertext for the messy branch, and later run the

state reconstruction algorithm to compute the internals when the sender is further

corrupted. For the non-messy branch, we compute the ciphertext honestly.

H3 and H4 are indistinguishable given the messy branch identification and cipher-

text equivocation property of the underlying enhanced dual mode encryption.

H5 We make a further modification based on H4. Now we turn to consider the case

that the sender is corrupted initially but the receiver is honest. In the coin-tossing

phase, we fake the commitment transcripts from the receiver based on (crscom, Tcom)

with the adversary. Further generate (crs tmp, Ttmp) <— PG t m p(l , G,crssys, Tsys), where

(G,crssys,Tsys) is previously generated in HI . After obtaining s from the adversary,

compute r such that crstmp -r + s. Now the decryption trapdoor ro t = (rsys, T tmp) and

the CRS crsot = (crssys,crstmp). Later we can equivocate the previous faked commit­

ment transcripts into r if the receiver is further corrupted.

H4 and H5 are indistinguishable given that the underlying commitment is UC se­

cure and that the mode indistinguishability of the underlying enhanced dual mode

www.manaraa.com

85

encryption.

H6 Based on H5, if it is the case that the sender is corrupted initially but the receiver is

honest, we do the following modification. Instead of honestly producing the pk based

on the receiver's input, we use the dual key generation to produce pk and sk0,ski,

later reveals the corresponding decryption key as its internal state when the receiver

is further corrupted.

H5 and H6 are indistinguishable given the encryption key duality property of the

underlying enhanced dual mode encryption.

H7 Based on H6, now we consider the cases that both parties are initially corrupted and

that both parties are honest. For the former, just follow the adversary's instruction,

and for the latter generate the transcripts honestly based on randomly selected in­

puts and the real inputs are not used.

H6 and H7 are indistinguishable given that the underlying dual mode encryption is

secure.

H8 The ideal world running with the simulator S and the ideal functionality J-ijj.

In H7, the inputs for honest parties are not used. So H7 and H8 are indistinguish­

able. Therefore the difference between the CRS hybrid world and the ideal world are

negligible.

Based on the above argument, we conclude that the protocol in Figure 3.8 is second-

corruption adaptively secure.

www.manaraa.com

86

Next we need to show the constructed simulator is input-preserving. This can be easily

verified. For the case with a corrupted sender and an honest receiver, if the corrupted

sender honestly follows the protocol using input (x0,Xi), the input can be extracted as

in the description of S; further S must submit the extracted (x0>*i) t o the functionality,

otherwise the environment can distinguish the two worlds based on the output from the

honest receiver. Similarly for the case with an honest sender and a corrupted receiver, if the

corrupted receiver honestly follows the protocol using input a, the input can be extracted

as in the description of S; further <S must submit the extracted bit a to the functionality to

learn xa, otherwise if <S submit a different bit 1 - a to the functionality and learn X_a, the

simulator has no idea of xa, and the environment can distinguish the two worlds based on

the output from the corrupted receiver.

Together we show the protocol based on Figure 3.8 is semi-adaptively secure to realize

TQJ in the CRS hybrid model. This finishes the proof.

www.manaraa.com

87

C h a p t e r 4

BLIND SIGNATURES

4.1 Introduction

A blind signature is a cryptographic primitive that was proposed by Chaum [Cha82]; it is

a digital signature scheme where the signing algorithm is split into a two-party protocol

between a user (or client) and a signer (or server). The signing protocol's functionality is

that the user can obtain a signature on a message that she selects in a blind fashion, i.e.,

without the signer being able to extract some useful information about the message from

the protocol interaction. At the same time the existential unforgeability property of digital

signatures should hold, i.e., after the successful termination of a number of n corrupted

user instantiations, an adversary should be incapable of generating signatures for (n + 1)

distinct messages.

A blind signature is a very useful privacy primitive that has many applications in the

design of electronic-cash schemes, the design of electronic voting schemes as well as in the

design of anonymous credential systems. Since the initial introduction of the primitive, a

number of constructions have been proposed based on different intractability assumptions

and security models with various communication and time complexities. The first formal

treatment of the primitive in a stand-alone model and assuming random oracles (RO) was

given by Pointcheval and Stern in [PS96].

Blind signatures have been implemented in real world Internet settings (e.g., in the Vo-

www.manaraa.com

88

topia [Kim04] voting system) and thus the investigation of more realistic attack models for

blind signatures is of pressing importance. Juels, Luby and Ostrovsky [JL097] presented

a formal treatment of blind signatures that included the possibility for an adversary to

launch attacks that use arbitrary concurrent interleaving of either user or signer protocols.

Still, the design of schemes that satisfied such stronger modeling proved somewhat elusive.

In fact, Lindell [Lin03] showed that unbounded concurrent security for blind signatures

is impossible under a simulation-based security definition without any setup assumption;

more recently in [HKKL07], the generic feasibility of blind signatures without setup as­

sumptions was shown but using a game-based security formulation.

With respect to practical provably secure schemes (which is the focus of the present

work), assuming random oracles or some setup assumption, various efficient constructions

were proposed: for example, [BNPS03, Bol03] presented efficient two-move constructions

in the RO model, while [KZ06, Oka06] presented efficient constant-round constructions

without random oracles employing a common reference string (CRS) model that with­

stand concurrent attacks. While achieving security under concurrent attacks is an im­

portant property for the design of useful blind signatures, a blind signature scheme may

still be insecure for a certain deployment. Game-based security definitions [PS96, JL097,

CKW04, KZ06, Oka06, HKKL07, CNS07] capture properties that are intuitively desirable.

But the successive extensions of definitions in the literature and the differences between

the various models in fact exemplify the following: on the one hand capturing all desirable

properties of a complex cryptographic primitive such as a blind signature is a difficult task,

while on the other, even if such properties are attained, a "provably secure" blind signature

www.manaraa.com

89

may still be insecure if deployed within a larger system. For this reason, it is important

to consider the realization of blind signatures under a general simulation-based security

formulation such as the one provided in the Universal Composability (UC) framework of

Canetti [CanOl] that enables us to formulate cryptographic primitives so that they remain

secure under arbitrary deployments and interleavings of protocol instantiations.

In the UC setting, against static adversaries, it was shown how to construct blind sig­

natures in the CRS model [Fis06] with two moves of interaction. Though the construction

in [Fis06] is round-optimal, it is unknown whether it can admit concrete practical instan­

tiations. In addition, security is argued only against static adversaries; and while it should

be feasible to extend the construction of [Fis06] in the adaptive setting this can only ex­

acerbate the difficulty of concretely realizing the basic design. Note that using the secure

two party computation compiler of [CLOS02] one can derive adaptively secure blind sig­

natures but this approach is also generic and does not suggest any concrete design.

4.1.1 Our Results

In this work we study the design of blind signatures in the UC framework against adap­

tive adversaries. We focus on maintaining a "practice-oriented" approach that entails the

following: (i) a constant number of rounds, (ii) a choice of session scope that is consistent

with how a blind signature would be implemented in practice, in particular a multi tude

of clients and one signer should be supported within a single session, (iii) a trusted setup

string that is of constant length in the number of parties within a session, (iv) avoiding, if

possible, cryptographic primitives that are "per-bit", such as bit-commitment, where one

www.manaraa.com

90

has to spend a communication length of Q(A) where A is a security parameter per bit of

private input. Our results are as follows:

Equivocal blind signatures. We introduce a new property for blind signatures, called

equivocality that is suitable for arguing security against adaptive adversaries. In an equiv­

ocal blind signature there exists a simulator that has the power to construct the internal

state of a client including all random tapes so that any simulated communication transcript

can be mapped to any given valid message-signature pair. This capability should hold true

even after a signature corresponding to the simulated transcript has been released to the

adversary. Equivocality can be seen as a strengthening of the notion of blindness as typ­

ically defined in game-based security formulations of blind signatures: in an equivocal

blind signature, signing transcripts can be simulated in an independent fashion to the

message-signature pair they correspond to.

General methodology for building UC blind signatures. We present a general methodol­

ogy for designing adaptively secure UC blind signatures. Our starting point is the notion

of an equivocal lite blind signature: The idea behind "lite" blind signatures is that security

properties should hold under the condition that the adversary deposits the private tapes

of the parties he controls. This "open-all-private-tapes" approach simplifies the blind sig­

nature definitions substantially and allows one to separate security properties that relate

to zero-knowledge compared to other necessary properties for blind signatures. Note that

this is not an honest-but-curious type of adversarial formulation as the adversary is not

required to be honestly simulating corrupted parties; in particular, the adversary may de­

viate from honest protocol specifications as long as he can present private tapes that match

www.manaraa.com

91

his communication transcripts.

We then demonstrate two instantiations of lite blind signature, one that is based on

generic cryptographic primitives that is inspired by the blind signature construction of

[Fis06] and one based on the design and the 2SDH assumption of [Oka06].

Study of the ZK requirements for UC blind signatures. Having demonstrated equivocal

lite blind-signature as a feasible starting building block, we then focus on the formulation

of the appropriate ZK-functionalities that are required for building blind signatures in the

adaptive adversary setting. Interestingly, the user and the signer have different ZK "needs"

in a blind signature. In particular the corresponding ZK-functionalities turn out to be

simplifications of the standard multi-session ZK functionality -7-MZK
 t r i a t restrict the multi-

sessions to occur either from many provers to a single verifier (we call this -?SVZK)
 o r from

a single prover to many verifiers (we call this ^SPZK)- Note that this stems from our blind

signature session scope that involves a multitude of users interacting with a single signer

(this is consistent with the notion that a blind-signature signer is a server within a larger

system and is expected that the number of such servers would be very small compared to

a much larger population of users and verifiers).

First, regarding SVZK, the ZK protocol that users need to execute, we show that it can

be realized in a commit-and-prove fashion using a commitment scheme that, as it is re­

stricted in single-verifier setting, it does not require built-in non-malleability (while such

property would be essential for general multi-session UC commitments). We thus proceed

to realize -?SVZK: using mixed commitments [DN02, Nie03] with only a constant length

common reference string (as opposed to linear in the number of parties that is required

www.manaraa.com

92

in the multi-session setting). Second, regarding SPZK, the ZK protocol that signer needs

to execute towards the users, we find the rather surprising result that a much weaker ver­

sion of SPZK, called leaking SPZK is enough for achieving adaptive security of our blind

signature protocol! This enables a much more efficient realization design for SPZK as we

can implement it using merely an extractable commitment and a Sigma protocol (alterna­

tively, using an Q-protocol [GMY06]). The intuition behind this result is that in a blind

signature the signer is not interested in hiding his input in the same way that the user is:

this can be seen by the fact that the verification-key itself leaks a lot of information about

the signing-key to the adversary/environment, thus, using a full-fledged zero-knowledge

instantiation is an overkill from the signer's point of view; this phenomenon was studied

in the context of zero-knowledge in [KZ07].

Finally we note that our J^PZK functionality can be seen as a special instance of client-

server computation as considered in [PS05] (where the relaxed non-malleability require­

ment of such protocols was also noted); interestingly ./SVZK falls outside that framework

(despite its client-server nature).

4.1.2 Recent Related Work

Fischlin [Fis06] proposed a blind signature functionality and gave an elegant round-optimal

constructions against static corruption. Recently Abe et al. [AO09] proposed a very inter­

esting relaxation of Fischlin's functionality, and gave practical round-optimal construc­

tions to realize such relaxed functionality in the UC setting against adaptive corruption.

Our constructions are not round-optimal, but we note that by using Abe et al.'s tech-

www.manaraa.com

93

niques, we could improve the round complexity and communication complexity of the

practical protocol in this work. We further note that the signatures obtained in our work

are much shorter than those in [AO09, AHO10].

Regarding the definitions of blind signature functionality, ours is different from theirs.

In our formulation, the corrupted signer is allowed to change its signing secret, while this

is not captured in [Fis06, AO09]. Indeed, in the reality, an adversarial signer may initial

such attacks (please also refer to [HK07]), and from this point of view, our formulation is

more natural. We further note that, our formulation could be further relaxed in the same

spirit in [AO09] to allow for more efficient constructions.

4.2 Blind Signature Schemes

In this section, we present the syntax and security definitions for blind signatures. We note

that the definitions are based on the formulations in the literature.

Definition 4.2.1 (Blind Signature Schemes). Syntax of a blind digital signature scheme

E(BS) = BS.{CRS,KG, U,S,Vrf} is defined as follows:

- (crs, T) <— CRS(1A) is a PPT CRS generation algorithm which takes as an input a security

parameter A and outputs a pair (crs, T) of CRS and its trapdoor.

- (vk,sk) <— KG(crs) is a PPT key generation algorithm1 which takes as an input crs and

outputs a pair (vk,sk) of verification and signing keys.

- ((a,a),C',fi,*7) <— \U{crs,vk,m);S(crs,vk,sk)^i^ is an interactive protocol between two

PPT parties, a user U and the signer S. At the end of protocol interaction, the user U

Here we consider all random coins used in KG have been included in sk.

www.manaraa.com

94

outputs a signature a as well as a bit a where a = 1 means that U's participation of

the protocol is complete, and otherwise if U]s participation is not complete, then set

a — 0 and a — 0. The signer S outputs a bit /5 where /5 = 1 means S's participation is

complete and /? = 0 otherwise. Here C and fj denote the randomness used by U and S

respectively.

— <£ <— Vrf (crs,vk, m, a) is a deterministic polynomial time algorithm, where (p — 1 means

message-signature pair (m,a) is valid, and (p — 0 otherwise. •

Remark 4.2.2. Note that in the plain model, CRS is not employed, and the blind signature

scheme E(BS) = BS.{KG,S, U,Vrf}.

A signature scheme is naturally defined by a blind signature when party S and party U

are same, i.e. S = U; in this case, the scheme E(BS) can collapse to a plain signature scheme

E(SIG) = SIG.{KG,SG,Vrf}. Here KG and Vrf are same as that defined in E(BS), and SG is the

signature generation algorithm which can be used to generate signature a for message m

by computing (a, C) <— SG(vk,sk, m) (such algorithm is immediately from the collapse of

S, U into a single unit). •

Definition 4.2.3 (Secure Blind Signature Schemes). A blind signature scheme E(BS) =

BS.{CRS, KG, U, S, Vrfj is secure if the following properties hold:

— COMPLETENESS: For all PPT A,

crs <- CRS(1A);(vk,sk) <- KG(crs);m <- A(vk);

Pr « a , a) , C ; / M) <" lU(crs,vk,m);S(crs,vk,sk)lLR;

(f>*- Vrf(crs,vk,m,o) : a = 0v<p = 0V/S = 0

www.manaraa.com

95

- UNFORGEABILITY: For all PPT A, Pr[Unforge^(A) = 1] =s 0 where experiment Unforge^

is defined as follows

Unforge^(A)

crs *-CRS(lA);

(vk,sk)<-KG(crs);

((pl,p2,...ipe),i1)^lA(crs,vk);S(crs,vklsk)tfR;

{{mi,al),(m2,cT2),...,(mk+1,ak+1)) <- A;

Return 1 iff all the following three conditions hold

(»')L?=ift<*

(ii) ra,- ̂ m,- for all 1 < i < j < k + 1

(Hi) Vrf(crs,vk, m^oi) = 1 for all 1 < i < k + 1.

- (INDISTINGUISHABLE) BLINDNESS: For all PPT A, Pr[IndBlind^(A, 0)] ~ Pr[IndBlind^(X, 1)],

where the experiment IndBl ind^ is defined as below:

IndBlind^(A,fc)

crs ^CRS(1 A) ;

(vk, m0, Wj) <— A(crs);

({ah,ob),Z,h) <- [L7(crs,vfc,mb);-4I|L;

«« i - i ^ i - i)»Ci -b) <- [L/(crs ,v^m^bJ^IlL;

If a0 = 0 V a t = 0 then set a0 = 0\ - 0;

Return b'<— ^4(CTO,O"I).

D

In the literature, there is stronger security notion of unforgeability denned as below. In

www.manaraa.com

96

this thesis, we focus on the regular unforgeability above.

• STRONG UNFORGEABILITY: For all PPT A, Pr[StrongUnforge^(A) = 1] « 0 where exper­

iment StrongUnforge^ is defined same as experiment StrongUnforge^ above except

condition (ii) is modified into (m;,CT,) * (mj,Gj) for all 1 < i < j < k + 1.

Above we give an indistinguishability style formulation of the blindness property. Please

refer to [CNS07] for a stronger indistinguishability-based formulation considering the

abort of the users. Below we give a simulation based formulation of such property.

• (SIMULATABLE) BLINDNESS: For all PPT A, there exist a tuple of PPT algorithms CRS,

U,SG such that Pr[SimBlind^(A,0)] « Pr[SimBlind^(A, 1)], where the experiment

SimBlind^(A, b) is defined as below:

S imBl ind^A, !)

crs ^-CRS(1A);

b'*-A°^m"\crs);

Return V.

SimBlind^(A,0)

(crs,T)*-CRS(lA);

b>^AO0(crs,T,;-)(crs)

Return V.

0\(crs,vk,m)

«a,<j>,C)«-[[/(crs,V*,WI)M]|L;

Output (a, a).

O0{crs,r,vk,m)

(a,£i)<-KCr(crs,T,v*)M]|L;

(a, £2) <— SG(crs, x, vk, m);

If a = 0 then set <r = 0;

Output (a, a).

www.manaraa.com

97

Definition 4.2.4 (Equivocal Blind Signatures). We say a secure blind signature scheme

E(BS) = BS.{CRS, KG, U,S, Vrf] is equivocal if the following property holds:

- EQUIVOCALITY: For all PPT A, there exist a tuple of PPT algorithms CRS, U, SG, Equiv

such that Pr[Equiv^(A,0)] ~ Pr[Equiv>1(A, l)] , where the experiment Equiv^(A, b) is

defined as below:

Equiv^(A, 1)

crs ^CRS(1 A) ;

b'<-A°^m'"\crs);

Return b'.

Equiv^A, 0)

(crs,r) <-CRS(lA);

V <_ AO0(crs,r,;-)(crs)

Return b'.

0\(crs,vk,m)

((a,a),Q ^ lU(crs,vk,m);AlL;

Output (a,a,C)-

Oo(crs,r,vk,m)

{a,Z1)<-lU(crs,T,vk);AlL;

(a, £2) *— SG(crs, x, vk, m);

C <- Equiv(^1/^2);

If a - 0 then set a = 0;

Output (a,a,Q.

•
4.3 Building Block: Lite Blind Signatures

4.3.1 Definitions

In this section, we focus on blind signature scheme E(2MBS) - 2MBS.JCRS, KG, Blind, Sign,

SG, Vrf}. Here algorithms CRS, KG, Vrf are same as the ones defined in Definition 4.2.1;

www.manaraa.com

98

algorithms Blind, Sign, SG consist of a special implementation of the signature generation

protocol between the signer 5 and a user U, as presented in Figure 4.1.

vk, sk
Signer {

crs

(s, 77) <— Sign(crs, vk, u, sk)

U

M0^ vk,m
\ User

(u, £1) <— Blind(crs, wA, m)

(<x, C2) •<— SG(crs, w/c, m, £1, u, s)

<7

Figure 4.1: Outline of a two-move signature generation protocol 2MBS.

Definition 4.3.1 (Lite Blind Signatures). We say a secure blind signature scheme E(2MBS)

2MBS.{CRS, KG, Blind, Sign, SG, Vrf} is lite if the following properties hold:

— COMPLETENESS: For all PPT A,

crs <- CRS(1A);(vk,sk) <- KG(crs);m <- A{vk);(u,Z,\) <- Blind(crs,vA:,m);

P f (s,rj) <— Sign(crs,i>fc,u,sk);(a,C2)«— SG(crs,vk,m,Ci,u,s);

<p <- Vrf (crs, vk,m, a) : a = 0v<|> = 0 V ^ = 0

— LITE-EQUIVOCALITY: For all PPT A, there exist PPT algorithms CRS, Blind, SG, Equiv such

www.manaraa.com

99

that Pr[LiteEquiv^(A, 0)] « Pr[LiteEquiv^

LiteEquiv^(A, 1)

crs <-CRS(lA);

b'*-A°^m^(crs);

Return b'.

0\{crs,vk,m)

(u,Ci) *- BV\nd(crs,vk, m);

(s,r],sk)*-A(u);

(a,C,2) *~ SG(crs,v/c,m,Ci,u,s);

C<-(Ci ,C 2) ;

a <— Vrf(crs, vk, m,a);

If well-formedness conditions hold

(i) s = Sign (crs, vk,u,sk;rj)

(ii)vk = KG(crs,sk)

set a <— 0 A a <— 0;

Output (ar,a,£).

— LITE-UNFORGEABILITY: For all PPT*4, Pr[Liti

., 1)], where LiteEquiv^(A, b) is defined as:

LiteEquiv^(A, 0)

(crs, T) * - C R S (1 A) ;

b> <_ ^O 0 (crs ,r f v)(c r s) .

Return V.

Oo(crs,r,vk,m)

(u, 4i) <— Blind(crs,i>fc, T);

{s,t],sk)<-A(xi);^i <- (Zi,s,rj,sk);

(0,^2) *~ SG(crs,r,vk,sk,m);

C*-Equiv(^!,^2);

a <— \frf(crs,vk,m,(j);

If well-formedness conditions hold

(i)s = S i gn (crs, vk,u,s k; rj)

(ii)vk = KG(crs,sk)

set a <— 0 A a <— 0;

Output (a,cr,C).

Jnforge^(A) = 1] « 0 where LiteUnforge^

www.manaraa.com

100

is defined as follows

LiteUnforge^(A)

crs <- CRS(lx);(vk,sk) <- KG(crs);state := 0;i := 0;

while i < £

(m^Cj,state) <— A(state,crs,vk);(\iiXi) <— BUnd(crs,vk,mi);

(Sj,rjj) <— Sign(crs,vk,Uj,sk);state <— sfaf£||s,;z <— i + 1;

((m1 ,cr1),(OT2 ,0'2),...,(m fc+i,cr t+1))^^;

Return 1 iff all the following three conditions hold

(z) £f=1 fa < k (ii) mi * m, for all 1 < i < j < k + 1

(Hi) \Zrf(crs,vk,mj,aj) = 1 for all 1 < i < k + 1.

•

Remark 4.3.2. For two-move signature generation protocols as in Figure 4.1, equivocality

implies lite-equivocality because the adversary in the lite-equivalently is much weaker.

Recall that (a, £,2) *~ SG(crs, r,vk,sk, m). The adversary might be able to generate dif­

ferent sk's consistent to a single vk, and embed some information related to a sk into a

signature string a; the adversary later by matching a with the corresponding sk identify

the involved user. This types of attacks first identified by Horvitz and Katz, and please

refer to [HK07] for more details. It seems difficult to argue that a scheme is lite-equivocal.

To facilitate the security analysis, we here only consider algorithm KG such that for each vk

there exists only a single sk. We also note that if sk is not used in SG algorithm, then such

requirement is not needed.

www.manaraa.com

101

4.3.2 Generic Construction for Lite Blind Signatures

In this subsection, we present two lite blind signature constructions. The first construction

is generic and is based on the blind signature design of [Fis06] whereas the second is a

concrete number theoretic construction that is based on [Oka06].

Our first construction is based on [Fis06]; the main difference here is that we need

the equivocality property (the original design employed two encryption steps for the user

that are non-equivocal); in our setting, it is sufficient to have just one equivocal commit­

ment (that is not extractable) in the first stage and then employ an extractable commit­

ment in the second (that is not equivocal). Refer to the signature generation protocol

in Figure 4.2: the 2MBS.CRS algorithm produces crs - (crsEQC,crsExc< crsNiz<); here EQC

and EXC are two commitments under crsEgc and crs^xc respectively; NIZK is an NIZK

def

argument under crsN|ZK; SIG is a signature scheme. The language £R = {x\(x, w) e R}

def
where R = {(crs,vk,E,m),(u,s,Ci,C2)Iu = EQCCom(crsEQC,m;Ci)A SIG.Vrf(v/c,u,s) = 1 A£ =

EXC.Com(crs£xou>s;C2)}- The algorithm 2MBS.Vrf given a message m and signature a op­

erates as follow: parse a into E and c, and check that MZK.Vrf((crs, vk, E, m), c) =? 1.

Theorem 4.3.3. The two-move signature generation protocol in Figure 4.2 is a lite blind signa­

ture. It satisfies lite-unforgeability provided that (i) SIG is unforgeable, (ii) EQC is binding, (Hi)

EXC is extractable, and (iv) NIZK is sound. It satisfies lite-equivocality provided that (i) EQC is

equivocal, (ii) EXC is hiding, and (Hi) NIZK is non-erasure zero-knowledge.

Proof (I) We first provide a sketch to show that the protocol in Figure 4.2 satisfies lite-

unforgeability.

Assume A is a lite-unforgeability adversary. We construct algorithm B to attack the

www.manaraa.com

102

crs = <crsEQC,crsEXc.crsN |ZK)

U

Verification Key = (vk) Verification Key = (vk)

Signing Key = (sk) Plaintext = (m)

(u,Ci)«— EQC.Com(crsEQc.'n)

(s,tj) <- S\G.SG(vk,sk,u)

SIG.Vrf(i;fc,u,s)=? 1

(EXl) *- EXC.Com(crsExc»u 's)

(c,C4)<-NIZK.Prv((crs,vfc,£,m)((u,s,Cl,C2);

: u = EQC.Com(crsEQQ,m;Ci)

ASIG.Vrf(vJfc,u,s) = l

A £ = EXC.Com(crsf;xc<u/s;C2))

ff^£||c

Figure 4.2: A generic signature generation protocol.

signature scheme SIG to produce a forgery. Note that B is given vk, and is allowed to query

the signing oracle with u ; and obtain s, such that SIG.Vrf(v/c, u ! (s,) = 1. B's goal is to obtain

a pair (u*,s*) where u* is not queried.

B runs a copy of A internally, and supplies A with crs and vk; note that A is allowed

to query (wi,-,Ci,i) where u; = EQC.Com(crsEQom,;Ci,,); given such query, B queries his

signing oracle with u,-, obtains Sj and then gives such s, to A, where SIG.Vrf(vA:,u,,s,) - 1.

At some point, A produces a pair (m*,cj*) where a* - E*\\c*, and NIZK.Vrf(crs,v/c,£*,m*;c*) =

1. Since NIZK is sound, there exist <u*,s*,CVC2) such that {(crs,vk,E\m*), (u* , s* ,C v Q) G R-

www.manaraa.com

103

Given that commitment scheme EQC is binding, we have only negligible probability to find

m^ * nij such that u, = EQC.Com(crsEQc,m,;Ci,,) = EQC.Com(crsEQC,m\;L,\;). Therefore m*

cannot be based on any queried u ; . By using the extractable trapdoor TEXC or" commitment

scheme EXC, B can extract u* and s* from E. Note that S\G.\/rf(vk, u*,s*) = 1, and u* has

never been queried, B can obtain a forgery (u*,s*) for SIC

(II) Secondly, we prove that the protocol in Figure 4.2 satisfies lite-equivocality. To finish

the proof, we need to construct a tuple of algorithms CRS, Blind, SG, Equiv as required in

Definition 4.3.1.

- (crs, T) <— CRS(1A) is described as follows: crs - (crsEQc,crs£xocrsnizk); T - (TEQOTnizk)

where TEQC is the trapdoor for equivocal commitment scheme EQC, and Tnizk the trap­

door for non-erasure zero-knowledge NIZK scheme NIZK.

- Blind is defined by EQC.Com, i.e., (u,4ii) <— EQC.Com(crsEQC, TEQC).

- SGis defined by NIZK.Prv, i.e., (c , ^) <— NIZK.Prv(crsN|ZK,TN|ZK,vA:,£,m), where {E,Z,2) <—

EXC.Com(crsExC'u's)- We note that here sk is not used in SG algorithm.

- Equiv is defined by EQC.Equiv and NIZK.Equiv, i.e., Ci <— EQC.Equiv(u,£i,m), C4 <—

NIZK.E^uTv(c,42,(u,s,Ci,C2)), and C <- (Ci,C2»C4)-

Based on the hiding property of EQC and EXC, and zero-knowledge property of NIZK,

the protocol transcript u and the signature (£ ,c) cannot be distinguished by any adversary.

In addition, based on the equivocality of EQC and the non-erasure property of NIZK, the

internal state C cannot be distinguished.

•

www.manaraa.com

104

4.3.3 Concrete Construction for Lite Blind Signature from Okamoto Signatures

In Figure 4.3 we present a lite blind signature Oka2MBS.{CRS, KG, Blind, Sign, SG,Vrf} that

uses the 2SDH assumption and is based on Okamoto's blind signature scheme [Oka06]; the

contribution here is our proof (cf. Theorem 4.3.4 below) that this design is in fact equivocal

(instead of merely blind as shown in [Oka06]). In this scheme the CRS algorithm produces

crs — {p,g\,g2>(&\><&2><£,T> e,i/>,«2,v2), where e : Gj x G2 —* G j is a bilinear map, Gi ,G 2 are

groups of order p, the KG algorithm produces a key-pair vk - (X), sk = (x) such that X = g%,

and the algorithm Vrf given a message m and signature a - (c, a, f>, Vj, V2), responds as

Q

follows: check that m,f> € Z p , c, Vj € Gj , a, V2 € G2 , Q * 1, a * 1 and e(c,a) = e(gi,g2
nu2v2)'

e(V1,a) = £(il>{X),X)-e(guV2).

Theorem 4.3.4. The two-move protocol of Figure 4.3 is a lite blind signature. It satisfies lite-

unforgeability under the 2SDH assumption. It satisfies lite-equivocality unconditionally in the

CRS model.

Proof. (I) First, we show the proof for lite-unforgeability. We note that the proof here

is very similar to the unforgeability proof of Okamoto signature (refer to the proof of

theorem 2, page 14, in [Oka06]). Assume A is a lite-unforgeability adversary. We construct

algorithm B to break the 2SDH assumption.

We consider two types of forgers, Type-1 forger and Type-2 forger. Let (p,g\,g2><&\><&2>

Gf, e, \p, u2, v2, X) be the verification key for the forger A and v2 = g2. Now A queries with

{mj,tirSj) and is responded with (Y,,/,,^) for i-\,...,L. The two types of forgers are:

- Type-1 forger: outputs a forgery (m*,o*) where a* - (Q*,a*,f>*, Vj*, V}), and m* + f>*z %

www.manaraa.com

105

crs = (p,gi,g2, Gi, G2 ,GT , e, ip, u2, v2)

s
vk = {X = gx

2)

sk = (x)

U

vk = (X=g*)

m e Z n

r,l*-Xp s.t. x + r * 0

W

y,ir

t,s<^Zp;W <-gfu[v\l

c l * -w vTt m o d P
f,h <— Z p ; c <— i !

a <— Xf gj ; /S<- s + { mod p

Vi<-WX)*s1*;V2<-x/h+r*{rfc

<r<-<e,a,/3,Vi,V2>

Figure 4.3: Signature generation protocol based on Okamoto digital signature.

m, +/3,2 for i = l,...,L.

— Type-2 forger: outputs a forgery (m*,e*) where a* = (c*,a*,f5*, Vf, V^), and m* + £>*z =

raj + /5,z for i - \,...,L. Note that in this case, /T ^ ^, because w* * nij.

B operates as follows:

1. # is given {gl,g2,A,B,C\,---,CL,ax,...,aL,bx,...,bL) where A = g$,B = gy
2,C{ = gx+a-,

i = l,...,L.

2. B randomly selects c t ype € {1,2}.

3. If c t ype = 1 :6 randomly selects z e Z p , and 6 sets X <— A = g\, u2 <— B = g\, and v2 *—

g2; B then gives (g\,giyVL2,v2,X) to .A as the verification key. When A queries with

www.manaraa.com

106

{nii.ti.Si), B computes /3,- <- hzp.> r. «_ fl;, c <_ ^ (Q) = g*+ai = g. I+r; , and Y; <- cj ' ,

h *~ U(Pi~si)- Then # returns (Y,-,/,-,r,). When .4 outputs a successful forgery (m*,a*)

where a* = <c*, a*, /?*, V{, V*), B checks m* + fi*z 2 m{ + fcz for all i = 1,.. . , L. If not, B

outputs f a i l u r e and aborts. Else B sets b* <— m* + /3*z, and outputs (c*,a*, b*, V[, V2).

4. If c t ype = 2: B randomly selects x',y' e Z p and computes X <— g^ , u2 <— g2 , v2 <^ A =

g\. B then gives (g\,g2, u2,v2,X) to .4 as the verification key. The simulation of signing

oracle can be achieved since B knows x'. When A outputs a successful forgery {m*, a*)

where a* — {c*,a*,f$*, Vf,V2), B computes z* <— ^~T for all i = \,...,L such that /i; ^

/T, and checks whether A - g\ . If it holds, z* - x. B then outputs (c,a,d,Vi,V2)

where c , ^ £ Z p , c <- (^(B^gf3 = Wg^^gf" = isl^sF = ft"* * *~ &

V1^^(A)g1,V2^A^gc
2'

1.

This completes the description of B.

(II) Here we show the proof for lite-equivocality.

- {crs,x) <— CRS(1A) is described as follows: crs = (p,gi,g2><Gi,G2, ^>j,&,i\>,u2,v2), x =

T T

< " V ^ , > such that «! =g1"1 ,vi =g1
1 '1.

- (vk,sk) <— KG(crs), where vk- X - g2 and sk = x. For each vk there exists a single sk.

- Blind is defined as follows: select in, r,s"<— Z p , and compute W <— g^wjuf .

- SG is defined based on only sA: but not any trapdoor of the CRS as follows: compute a <—

<C,a,/J, Vi, V2), where c <- (^ " i ^ f) ^ a <- gf+7~, Vj «- V P O ^ f V2 <- x ' ^ g f , and

- Equiv is described as follows.

www.manaraa.com

107

First we compute t,s such that W - g f ' u j v f = g ^ ' w ^ f and /? = s + | , i.e., based

on equations (m + T„2 + sxV2)t - (in + xUl +TrV2)t and /? = s + j . Then we have f «—

(m+TM2+rT„2)7+T„2; , . W+TU2+^T„2

m+r^+^r^ ' a n Q S <- P (W+T„2+?T„2)F+T„2/ "

Second we compute f,h such that c - {g™uiv^)/*+r = (g^Mi^ ')fx*fr, a - g2 -

g{x+fr, V1 = Jp(X)^f = V(X)7g{,
/ and V2 = X / , 1 + ? g f = Xfh+rg[rh. Reduce the redun­

dance, and we can compute / , h based on just equations fx+T- f(x+r), and ^+h = j+h.

We have / <- % ^ and h «- i + T T - 4 ^ ;

•> *+r y yx + r

We note that the transcript W, and the signature a, and also the internal states are identi­

cally distributed as those in the real protocol execution. •

4.4 Building Block: Single-Verifier/Prover Zero-Knowledge

4.4.1 Single-Verifier Zero-Knowledge

We first describe the functionalities J-SVZK
 m Figure 4.4.

Next we investigate how to realize the functionality ^VZK a g a i n s t adaptive adversaries

for some relation R. We proceed as follows: first given (x,w) € R, we will have the prover

commit the witness w into value C; given that we have a single verifier in our setting (the

signer), we find it convenient to base the commitment scheme that we employ based on the

mixed commitment primitive of [DN02, Nie03]; using such a commitment one then can

employ a non-erasure Sigma protocol to show the consistency of the witness between the

commitment C and the statement x by performing a proof of language membership; finally

to defend against a dishonest verifier, the Sigma protocol will have to be strengthened so

www.manaraa.com

108

Functionality -^yZK

•^SVZK' P a r a m e t e r i z e d by a binary relation R, interacts with a single verifier V and a set V of provers,

adversary S. For each input or message, the functionality verifies that sid = (V,sid') for some sid', and

ignores it otherwise.

Proof:

— Upon receiving (svzKPROVE,P,sid, (x, w)) from a prover P e V, forward

(svzKLEAicPR0VE,P,s;d,(x,<p)) to the adversary <S, and record (x,w) into historyp, where

(p = 1 if (x,w) e R, and (p = 0 otherwise. Ignore future (SVZKPROVE,P , . . .) .

— Upon receiving (SVZKINFLPROVE, V, sid, P) from the adversary S, out­

pu t (SVZKPROVERETURN, V,sid, {P, x, (p)) to the verifier V. Ignore future

(SVZKINFLPROVE, V, sid, P).

Corruption:

— Upon receiving (CORRUPT, P,sid) from the adversary S, return it

(CORRUPTRETURN, P, sid, historyp).

After the successful corruption of P, if no output (SVZKPROVERETURN,P,sid, . . .) was re­

turned to party V yet, upon receiving (PATCH, P, sid, (x'', w')) from the adversary <S, output

(SVZKPROVERETURN, V,sid, (P,x',<p')) to party V, where cf>' = 1 if (x',u>') 6 R, and cp' = 0

otherwise.

Figure 4.4: Single-verifier zero-knowledge functionality J^VZK-

www.manaraa.com

109

that it can be simulated without knowing the witness; this e.g., can be based on Damgard's

trick [DamOO] (or alternatively one may use an OR-proof).

An SVZK instantiation is presented in Figure 4.5: (1) it is based on a three-move mixed-

commitment in the single-verifier setting, and EQC is an equivocal commitment which is

used to strengthen the mixed-commitment by binding the committer from the beginning

(please refer to section 9.4 in [Nie03] for more discussion); (2) a non-erasure Sigma proto­

col 3MZK = 3MZK.{Comt, Coins, Resp, Vrf} is used to show the consistency of the relation R

and the strengthened mixed-commitment, i.e. for relation R' = {((crs,x,C0,E),(w,n,Q)\

(x,w) G R A E - M\X.Com(K,w,Q A C0 = EQCCom(crs£Qc,w,n)}, and a combination of

the Sigma protocol with the committing step of mixed-commitment can be found in Fig­

ure 4.6; (3) COM is an equivocal commitment schemes for applying Damgard trick to the

non-erasure Sigma protocol.

Theorem 4.4.1. Given two equivocal commitment schemes EQC and COM, and a non-erasure

zero-knowledge Sigma protocol 3MZK.{Comt, Coins, Resp, Vrf}, the SVZK protocol 7t£(SvZK) ! "

Figure 4.5 securely realizes ^SVZK IM ^e ^CRS'ny^r^ model.

4.4.2 Single-Prover Zero-Knowledge

We describe the functionality TC,YZK Figure 4.7.

SPZK instantiations can also be constructed against adaptive corruption based on mix-

commitments and non-erasure Sigma protocols. However, we surprisingly find that a

weaker version of SPZK, called leaking SPZK, is enough for our UC blind signature pro­

tocol. We note that leaking SPZK protocols can be much more efficiently constructed,

www.manaraa.com

110

Protocol 7i£(svZK) ' n t ' l e -?CRS"Hybrid World

CRS genera t ion: Set crs <— (crsMix,crsEQc,crsr;oM) where crs^ix <— MIX.CRS(1A) and crsr_QC <—

EQC.CRS(1A) and crsCOM <- COM.CRS(lA).

Proof: Please refer to Figure 4.4 for a pictorial presentation.

When party P is invoked with input (SPZKPROVE,P,sid,(x,w)) by 2 , it verifies that sid = (V,sid')

for some sid'. If not, then ignore the input. Else, if (x,iv) € R, it computes (Cg,»;) <—

EQC.ComfcrsEQow) and K] <— MIX.Coins() and (Ci,pi) <— MIX.Com(crsMix,Ki), a n d then sends

message (SVZK-[, sid, (CQ,C\)) to par ty V.

When party V is invoked with incoming SVZKJ message, it selects Kj <— MIX.Coins(), and sends

message (svzK2,sid,Kj) to par ty P.

When party P is invoked with incoming svzK2 message, it computes K «—

MIX.NewCRS(crsM|X,Jfi,X2). (E.C) <- M\X.Com(K,iv), (a,ra) <- 3MZK.Comt((x,C0,E), (1 ,̂17, C))

and (c,r) <— COM.Com(crscoM'fl)' a n d sends message (svzK.3,sid,(Ki,fii,x,E,c)) to party P.

When party V is invoked with incoming SVZK3 message, it verifies if MIX.VrffcrsMix,C\,K\,}i\) =

1 holds. If the equation holds, then it selects e <— 3MZK.Coins(), and sends message (SVZK^, sid, e)

to party P.

When party P is invoked with incoming SVZK4 message, it computes z <—

3MZK.Resp((x,Co,E),(w,ri,Q,ra,e), and sends message (SVZK5,sid,(a,r,z)) to party V.

When party V is invoked with incoming SVZK5 message, it verifies c = COM.Com(crsrjoM>fl;r) a n d

Vrf((x, Co, £), a, e, 2) = 1; if both hold, then it returns message (SVZKPROVERETURN, V,sid, (P,x, 1))

to Z. Otherwise return (SVZKPROVERETURN, V, sid, (P, x, 0)) to Z.

Figure 4.5: Single-verifier zero-knowledge protocol H£(SVZK) f° r relation R.

www.manaraa.com

I l l

C 7 C™MIX, CTSEQC ^

Verifier 1

K2 <- MIX.Coins()

If if = 0, set <f> <- 0
and ignore t he following

e <- 3MZK.Coins()

^><-3MZK.Vrf({a::Cn,£) . a , e , 2)

Co, C\

K2 v

Ki,ni,E,a

e I

z \

\ Prover

(C0,17) «- EQC.Com(crsEQC,w)
K1 <- MIX.Coins()
(Ci./^i) «- MIX.Com(crsM|X,-K'i)

A' <- MIX.NewCRS(crsM|X,ifi,iir2)
(£ , 0 <-MIX.Com(if,io)
(a, ra) <- 3MZK.Comt«3r, C0,E), (w, r), ())

z <- 3MZK.Resp((x, C„, £) , <iu, JJ, C), ra, e)

Figure 4.6: A combination of a committing step of a mixed commitment

MIX with a non-erasure zero-knowledge Sigma protocol 3MZK for relation R' =

l((crs,x,C0,E),(w,r],C))\ (x,u>) € R A £ = MIX.Com(J<C, w,rj) A C0 = EQC.Com(crsEQc, w;^)} in

the single-verifier setting.

and can be based on extractable commitments (which are more efficient than mix commit­

ments) plus Sigma protocols. Please refer to Section 4.7

4.5 Blind Signature Functionality

In this section we present our design methodology for constructing UC-blind signatures

secure against adaptive adversaries, i.e., the protocol obtained by our method can UC-

realize the blind signature functionality J^s (defined in Figure 4.9). A previous formaliza-

www.manaraa.com

112

Functionality -7v-pZK

•^SPZK' P a r a m e t e r i z e < i by a binary relation R, interacts with adversary S, and a single prover P and a set

V of verifiers. For each input or message, the functionality verifies that sid = (P,sid') for some sid', and

ignores it otherwise.

Proof:

— Upon receiving (SPZKPROVE.P,sid,(V,x,w)) from the prover P, where V e V, forward

(spzKLEAKPRovE,P,s!d,(V,x,(£)) to the adversary <S, and record (V,x,w) into historyp, where

</> = 1 if (x ,^) € K, and <p = 0 otherwise. Ignore future (spzicPROvE,P,s!ii,(V\...)).

— Upon receiving (SPZKINFLPROVE, V,sid) from the adversary S, ou tput

(SPZKPROVERETURN, V,sid,{V,x,<p)) to party V. Ignore future (SPZKINFLPROVE, V,sid).

Corruption:

— Upon receiving (CORRUPT, P, sid) from the adversary S, return 5

(CORRUPTRETURN.P, sid, historyp).

After the successful corruption of P, if no output (SPZKPROVERETURN,V,sid, . . .) was

re turned to party V yet, upon receiving (PATCH,P,s id , (V,x ' ,w ')) from the adversary S,

output (SPZKPROVERETURN, V,sid,(x',<p')) to party V, where <p' = 1 if (x',w') e R, and <p' = 0

otherwise.

Figure 4.7: Single-prover zero-knowledge functionality J^SPZK-

tion of the blind signature primitive in the UC setting was given by [Fis06]. In our defini­

tion of the ideal functionality we give an explicit description of how corruption is handled;

as we deal with adaptive adversaries, being explicit in the way that the ideal functional­

ity interacts with the adversary during corruption makes the security model crisper. One

other difference is that our _7^s does not require strong unforgeability from the underlying

signing mechanism; this makes the presentation more general as strong unforgeability is

www.manaraa.com

113

not necessary for many applications of the blind signature primitive. Further, protocols

realizing the functionality of [Fis06] requires a single "global trapdoor" that enables the

functionality to produce a signature for a given message that will be valid for any given

public-key; while this can be handy in the security proof, it is not a mandatory require­

ment for a UC-blind signature (which may allow for a different trapdoor to be used by the

functionality in each occasion); we reflect this in our ideal functionality by allowing the

adversary in the corrupted signer setting to "patch" the ideal functionality with a different

signing key for each user. In a blind signature session we allow for a single signer (whose

identity is hard-coded into the session identifier sid) and a multi tude of users.

We define the ideal functionality J^$ in Figure 4.9. Please also refer to a pictorial

version in Figure 4.10. Here we provide the definition of UC blind signature protocol

and show that protocols realizing such J^s w iU D e secure in some existing model e.g. of

[Oka06, HKKL07].

As defined in Definition 4.2.1, a blind signature scheme is a tuple E(BS) - BS.fCRS, KG,

U, S,Vrf} where U, S is an interactive protocol between the user and the signer. In each

round of the protocol the user and the signer exchange messages (note that U, S may ex­

tend to many rounds). Given such protocol we can also define a Sign algorithm by col­

lapsing the interactive protocol U, S into a non-interactive algorithm (that simulates both

parties). Given such a scheme each party in the UC-framework will execute a program

7T£(BS) that is described in Figure 4.11.

Definition 4.5.1. A blind signature scheme E(BS) = BS.{CRS,KG, Lf,S,Vrf} is UC-secure in

the CRS model if 7Z£(BS) realizes the ideal functionality J^s in Figure 4.9 in the J^Rs-hybrid

www.manaraa.com

114

Functionality J^$

^BS interacts with the adversary S, and a set P of parties (including a single signer S, a set U of users,

and a set V of verifiers). Initial history := 0 and memory := 0. For each input or message, the function­

ality verifies that sid - (S,sid') for some sid', and ignores it otherwise.

Key generation:

— Upon receiving (KEYGEN,S,sid) from party S, forward (LEAKKEYGEN, S,sid) to the adversary

S. Ignore future (K E Y G E N , S , . . .) .

— Upon receiving (INFLKEYGEN, S,sid,(s, v)) from <S, record (s, v) in historys and memory, and

output (KEYGENRETURN,S,sid,v) to party S, where s is a probabilistic poly-time stateless

algorithm, and v is a deterministic algorithm. Ignore future (I N F L K E Y G E N , S , . . .) .

S ignature generat ion:

— Upon receiving (SIGN, U,sid,(m,\i')) from party U eU, record (m, v') in his tory^, and send

(LEAKSIGN, U,sid, v') to the adversary S. Ignore any future (SIGN, U,...).

— Upon receiving (lNFLSiGN,S,s;d,(U,/i)) from S, if his tory^ = 0 or (m,\i',a) in h is tory^, ig­

nore the message. Else output (SiGNRETURN,S,sid,(U,/3)) to par ty S, and record (U,fi) in

history5. Ignore future (INFLSIGN,S,sz<2,(!7,...)).

— Upon receiving (INFLSIGN,U,sid,a) from S, if his tory^ = 0 or no (L7,/J) in historys,

then ignore the message. Else update historyy into (m,v',a). If a = 0, return

(SIGNRETURN, Lf,sid, (0,0)) to par ty U. If a = 1, then compute (a,Q <— s(m) where s is

from history s and C is the randomness, and update historyy into (ra,v', l,a,C), and return

(SIGNRETURN, U,sid,(l,a)) to party U. Ignore future (INFLSIGN, U,...).

Figure 4.8: Blind signature functionality J^s (part 1).

www.manaraa.com

115

Functionality JRS

Signature verification:

— Upon receiving (VERIFY,V,sid,{m,a,v')) from party V e V, compute (f> <— v'(m,o), and

record {m,o,v',(f>) in his tory^, ou tpu t (VERIFYRETURN,V,sid,(p) to party V. Ignore future

(VERIFY, V,. . .) .

Corruption:

— Upon receiving (CORRUPT, P,sid) from the adversary S, mark P as corrupted, and re turn

(CORRUPTRETURN, P,sid, historyp) to S.

When party U is corrupted at some point, upon receiving (PATCH, U,sid,{th,v)) from S, if

neither (m,\i',a) in history^ nor (U,fi) in history5 then set historyy <— (m,v) otherwise

ignore the message; ignore any future (PATCH, U,...) message.

When party S is corrupted at some point, upon receiving (PATCH,S,sid,(s, U)) from S, then

update s «— s in historys, and record (s, v') into memory where v' is from his tory^.

Halting conditions: At any moment, halts if any condition below holds:

(i) If party S is not corrupted, v' = v, and v(m, a) = 1, where v is from historyj and historyy =

{m,v',o, 1) for some V, but there is no U such that m is recorded with any a' in his tory^;

(ii) If party S is not corrupted, and \i(m, a) * 1, where v is in history5, and m, a in his tory^ for

some 17;

(iii) If v'(m,ff) •*• 1, where history^ = (m,v', l,cr,C) for some U;

(iv) If /S * a, where a is in his tory^ for some U, and (U,p) in historys;

(v) If there are pairs (sj ,V]) and (s2,vj) in memory such that s i * S2-

Figure 4.9: Blind signature functionality J^s (part 2).

www.manaraa.com

116

(LEAKKEYGEN, S, sid) (INFLKEYGEN, S, sid, (s, v))

Interaction with
I Ideal World Adversary

(KEYGEN. S, sid) (KEYGENRETURN, S. sid, v

(LEAKSIGN, U, sidy) (INFLSIGN, U, sid. a) (INFLSIGN, S, sid. 13)

Interaction with
| Ideal World Adversary

(SIGN, U, sid, <m. v')) (SIGNRETURN, U, sid, (a, a)) (SIGNRETURN, S, sid, (U, 0))

Interaction with
Ideal World Adversary

•FB;
Interaction with

Environment

(VERIFY, V, sid, (m, a, v')) (VERIFYRETURN. V. sid, <j>

Figure 4.10: Pictorial presentation of the ideal functionality for actions KEYGEN, SIGN, and

VERIFY, respectively.

www.manaraa.com

117

world, where J ^ R S is an implementation of the CRS algorithm as given in the specification

of the scheme.

We note that each party that acts as a user in our framework is programmed to ask for a

single signature; we make this choice without loss of generality and for the sake of keeping

the description of the scheme simple. We prove that if a blind signature protocol securely

realizes J^o,, then the scheme is also secure in the stand alone model

The theorem below is a sanity-check that shows that the ideal functionality we propose

is consistent with some of the previous modeling attempts. Naturally the intention is that

realizing the ideal functionality goes much beyond the satisfaction of such previous game-

based definitions. Still establishing results as the one below is important and non-trivial

due to the fact that ideal functionalities interact with the ideal-world adversary substan­

tially something that may (if they are badly designed) lead to disparities with game-based

definitions.

Theorem 4.5.2. Ifn^iQS) can realize our J^g in Figure 4.9, then L(BS) is a secure blind signa­

ture.

Proof. The general plan of the proof is as follows: we first assume E(BS) is not secure

according to one of the previous definitions. Then we construct an environment Z so that

for all S it can distinguish the interaction with H£(BS), from the interaction with the ideal

world adversary S and J^s-

(I) We first assume that there is a successful forger F for E(BS). Then Z internally runs

an instance of F. The environment Z invokes party S with (KEYGEN, S,sid), and gives the

returned verification algorithm v to F.

www.manaraa.com

118

Blind Signature Protocol TT£(BS)

CRS generation: crs <— CRS(1) where A is the security parameter. Each par ty once invoked obtains

the string crs immediately.

Key generation: When party S is invoked with input (KEYGEN, S,sid) from Z, it verifies that sid =

(S,sid') for some sid'; If not, it ignores the input; Otherwise, it runs (vk,sk) «— KG(crs),

lets the verification algorithm v := Vrf(crs,vk,-,-), records (sk,vk) in historys, and outputs

(KEYGENRETURN, S,sid,v) to Z.

Signature generation: When party U is invoked with input (SIGN, U,sid, (m, v')) from Z where sid -

(S,sid'), it computes msg^, and records the internal state in history^ including the randomness

used, and the input m, v', and sends outgoing (BSIGI,si<2,msgj) to party S (through A). If party U

fails to compute msgj, then outputs (SIGNRETURN, U,sid, (0,0)) to Z, and halts.

When party U is invoked with incoming (BSIGJ,sid,msgj) from party S, where sid = (S,sid'), it

computes msgi+i, updates its internal state in his tory^, and sends outgoing (BSIG ! +I ,sid,msg i +^)

to par ty S; if msgi+i is the last message generated by U, then U further computes the signature

a, updates its internal state in history^;, and outputs (SIGNRETURN, U,sid,(I,a)) to Z and halts.

If U fails to compute msgi+i or the signature a, then outputs (SIGNRETURN, U, sid, (0,0)) to Z, and

halts.

When par ty S is invoked with incoming (BSIG,-,sid,msgj) from party U, where sid =

(S,sid'), it computes m s ^ + 1 , records its internal state in his tory s , and sends outgoing

(BSIG,+ I ,s id ,msg:+ j) to party U; if rasg:+I is the last message generated by S, then S

also returns (SIGNRETURN,S,s id , (U, l)) to Z. If S fails to compute msg:+i, then outputs

(SiGNRETURN,S,sid,([/,0)) to Z, and halts.

Signature verification: When party V is invoked with input (VERIFY, V,sid,{m, a, v')) from Z where

sid = (S,sid'), it outputs (VERIFYRETURN, V,sid, v'(m, a)) to Z.

Corruption: When party / is invoked with (CORRUPT,/ ,s id) by Z, it sends

(CORRUPTRETURN,/ ,s id , historyj) to Z.

Figure 4.11: Blind signature protocol 7tj:(BS)-

www.manaraa.com

119

When the simulated F outputs BSIGJ message on behalf of some party U, Z creates

party U; Z then corrupts party U and forces it to send his first outgoing message (through

A) to party S; when F outputs its i-th message where i > 1, Z forces party U to send

the corresponding message to party S; when the corrupted party U receives an incoming

message from the signer, Z forwards it to the simulated F. Z uses Ci to count the number

of successful final signer messages from the party S. Z uses C2 to count the number of

(SIGNRETURN, S,sid,(U, 1)) messages obtained from party S (as this party returns this value

to the subroutine output tape of Z). When the simulated F outputs a number of, say

L, forged message-signature pairs, Z activates L verifiers with (VERIFY,V,sid,{mj,o\,y)),

where i = 1,...,L; the verifiers will return 1, i.e. (VERIFYRETURN, V,sid, 1), for the successful

forged pairs. Z uses C3 to count the number of l 's. If Z finds that C3 < C2 it returns 0

otherwise it returns 1.

In the real world, because F is a successful forger, with non-negligible probability, Z

will observe C3 > Cj. Moreover, note that Cj - C2 will hold in the real world, which is

based on the fact: when party S sends his last outgoing message to party U, he also sends

output (SIGNRETURN,S,sid,(U,l)) to Z. It follows that when Z operates in the real world

it returns 1 with non-negligible probability.

Next we turn to the ideal world. In the verification stage, when a verifier receives

(VERIFY, V,sid,(w,-,5j,v)), he will forward such message to J^s, and J^s W1H check if the

message is a forgery using the information he possesses. Based on the definition of J^g,

such check will return v(m,,a5) to the verifier, as long wF; is recorded with a signature. In

case the message is not recorded with a signature, J^$ would either return (VERIFYRETURN, V,

www.manaraa.com

120

sid, 0) or halt. It follows that Cj will be incremented only due to messages recorded with

done. Given that all users are corrupted on start there is only one possibility that a mes­

sage is recorded with done within J^$: S has patched the particular message into some

corrupted user instance inside J^s- Note that a message is recorded with done by J^s only

after a message (INFLSIGN,S,sid,(U, 1)) is received from S. The environment tracks the

(SIGNRETURN,S,sid,(U, 1)) messages into Cj thus we can be certain that in the ideal world

it would be impossible to have C3 > C2. It follows that in the ideal world, C3 < C2; thus

it follows that the environment always returns 0 and it is a distinguisher between the real

and the ideal world for any implementation of <S.

(II) Next assume there is a successful blindness distinguisher D for E(BS). Then Z inter­

nally runs an instance of D. Such D can be viewed as a signer inside Z. When D outputs

the verification algorithm v and two messages (ntQ,mi), Z activates two parties Ui and

$
UR with (SIGN, U,sid,(my,^)) and (SIGN, U,sid,(mi_y,v)), respectively, where b <— {0,1} is

randomly chosen by Z.

Subsequently Z relays all messages communicated between the party D and the two

user protocols. Next if Z obtains two valid responses (SIGNRETURN, UL,sid,(ay,^)) and

(SIGNRETURN, UR,sid, (#i_j„ <J\-b)) from the two parties Ui and UR respectively. If a0 -

ci\ - 1, then D is supplied with (l,a0;l ,<Ti), else with (0,0;0,0). Finally D returns b* as the

guess of the random coin b which is chosen by Z. Here Z returns b* =• b.

Consider now that D is a successful blindness distinguisher for E(BS); in the real world,

D will guess the coin b with non-negligible advantage. However, in the ideal world, no

matter how the simulator S is implemented we observe that the bit b remains secured in

www.manaraa.com

121

Z and the ideal functionality J^s does not communicate any information related to b to <S.

Therefore, <S cannot help D to figure out b.

Due to an attack in [HK07], still D may use two different signing algorithms sL and

s# for the interactions with the users Ui and UR respectively; note that both s^ and s#

correspond to the same verification algorithm v; once D receives {OQ,O{) from Z, he may

use s^ and s# to relate the message-signature pairs to the users correctly and figure out

b. However, once D uses two different signing algorithms, both of them will be patched

into J^s'' n o w both (Ui,sL,v) and (UR,sR,v) will be recorded which will halt the execution,

and Z can easily distinguish the two worlds. This follows that the coins b are independent

from D, and even an unbounded D cannot guess such b with probability better than 1/2.

It follows that Z is a distinguisher between the real and the ideal worlds.

•

4.6 Generic Construction for Adaptively Secure Blind Signatures

Our design is modular and delineates the components required for designing UC blind

signatures in the adaptive security setting. We present our methodology in two steps.

First, we employ a lite blind signature scheme and we operate in a hybrid world where

the following ideal functionalities exist: -?CRS>-^VZK'-^;PZK- Here J ^ R S
 w iU be an appro-

priate common reference string functionality; on the other hand, -^VZK'-^PZK w ^ ' 3 e t w o

different zero-knowledge functionalities that are variations of the standard multi-session

ZK functionality. This reflects the fact that the ZK "needs" of the user and the signer are

different in a blind signature. (1) -T^VZK *s t^ i e " s m g^ e verifier zero-knowledge functional-

www.manaraa.com

122

ity for the relation Ry" where the user will be the prover (please refer to Figure 4.4) and,

P
(2) ^ P Z K i s t r i e "single-prover zero-knowledge functionality for the relation jRs" where

the signer will be the prover (refer to Figure 4.7). The two functionalities differ from the

multi-session zero-knowledge ideal functionality -T^JZK (e-g-> s e e
 -?ZK

 m figure 7, page 49,

in [CLOS02]) in the following manner: J^VZK assumes that there is only a single verifier

that potentially many provers wish to prove to it a certain type of statements; on the other

hand, JSPZK assumes that only a single prover exists that potentially wishes to convince

many verifiers regarding a certain type of statement. Our setting is different from previous

UC-formulations of ZK where multiple provers wish to convince multiple verifiers at the

same time; while we could use such stronger primitives in our design, recall that we are in­

terested in the simplest possible primitives that can instantiate our methodology as these

highlight minimum sufficient requirements for blind signature design in the UC setting.

4.6.1 Construction in the (FQRS, fsvzK'^spzKJ-Hybrid World

In this section we describe our blind signature construction in the hybrid world. In Fig-

R R

ure 4.13, we describe a UC blind signature protocol in the (J^R S , JgV2K ,J^P2K)-hybrid

world that is based on a lite blind signature protocol. The signature generation part can be

pictorially described in Figure 4.12.

The relations parameterized with the ZK functionalities are Ry = {((crs,vk,u), (ra,Ci)) I u =

2MBS.BUnd(crs,vA:,wi;Ci)} and Rs = {((crs,vk,u,s),(sk,n)) \ s = 2MBS.Sign(crs, vk,u,sk;rj) A

vk = KG(crs,sk)}. We remark that in the protocol in Figure 4.13 all communication between

users and the signer is relayed through the ideal functionalities. We prove the following

www.manaraa.com

123

crs
vk, sk

Signer \

(s. rj) i— Sign(cr,s, vk, u, sk)

_(crs, vk ^(SVZK) ((crs,vk,u).{m,Q)) j (u, 0) «- Blind(trs, vk, m)

({crs, «fc.u, s), (si.»)))
SPZK

(crs, vk, u, s)

vk,m
\ User

(""^2) <~ SG(crs, vk,m,(i, u,s)

* "
a

Figure 4.12: A pictorial description of signature generation.

main theorem:

Theorem 4.6.1. Given a signature generation protocol that is a lite blind signature, the protocol

R R
K£(BS)

 z" Figure 4.13 securely realizes Jjjs z n tne
 (- ^ C R S ^ V Z K ' •^pzic)~'I}'knd model.

4.6.2 The Proof of Main Theorem

Before the proof of Theorem 4.6.1, we introduce a useful lemma as below which will help

us to organize the proof. Note that we can extend such lemma to general setting.

Lemma 4.6.2. Assume that

(1) 3«Si,VZ, EXEC^B
S^K"F s p S z K = EXEC^Si>z, where Tx is dummy blind signature func­

tionality (cf. Figure 4.14);

(2) forSi,3SM,SZ, EXEC nd,St,Z EXEC nd,Si+i,Z < ev where 1 < i < 4;

(3) . F 5 = . ^ s -

www.manaraa.com

124

Protocol 7T£/BS) l n t r i e (.7cRS>^vZK'-^SPZK)"^y''rid Model

CRS generation: crs <— CRS(l^) where A is the security parameter. Each party once activated obtains

the string crs.

Key generation: When par ty S is invoked with input (KEYGEN, S,sid) by Z, it verifies that sid = (S,sid')

for some sid'; If not, it ignores the input; Otherwise, it runs (vk,sk) <— KC(crs), stores sk, defines

the verification algorithm v := Vrf(crs, vk, •, •), and sends output (KEYGENRETURN, S,sid, v) to Z.

Signature generation: Please also refer to Figure 4.12 for a pictorial description of this stage.

On input (SIGN, S,sid, (m, v')) from Z where sid = (S,sid'), the party U obtains vk'

from v', selects random Ci and computes (u,Ci) <— 2MBS.BUnd(crs,vk',m) and sends

(SVZKPROVE, U,sid,{(crs,vk',u),(m,Ci))) to -?WzK'

Upon receiving (SVZKPROVERETURN, S,sid,(U, (crs', vk',u))) from ^ J i K , the party S verifies crs' =

crs and vk' = vk. If not, then the party S outputs (SiGNRETURN,S,s!'d,(LT,0)) to Z. Else the party

S selects random r\ and computes (s, r\) <— 2MBS.S\gn(crs,vk, u,sk) and sends (SPZKPROVE, S,sid,

(U, (crs, vk,u,s), (sk, t]))) t o i ^ P 2 K , and outputs (SIGNRETURN, S,sid,(U, 1)) to Z.

Upon receiving (svzKPROvERETURN,S,sid,(U,0)) from -^WzK' ^ e P a r t v S outputs

(SIGNRETURN, S.sid, (U, 0 » to Z.

Upon receiving (SPZKPROVERETURN, U,sid, (crs',vk",u',s)) from J-Qp%v, the party U verifies that

crs' = crs and vk" = vk' and u ' = u. If not, then par ty U outputs (SIGNRETURN, U, sid, (0,0)) to

Z. Else, the party U selects random C2 and computes (ff,C2) *- 2MBS.SG(crs,i>fc',m,Ci.u,s), and

outputs (SIGNRETURN, U,sid,(l,a)) to Z.

Upon receiving (SPZKPROVERETURN, U, sid, 0) from -^pzK' P a r t y U outputs

(SIGNRETURN, U, sid, (0,0)) to Z.

Signature verification: When party V is invoked with input (VERIFY, V,sid,{m,o,v')) by Z where sid =

(S,sid'), it outputs (VERIFYRETURN, V,sid, v'(m, a)) to Z.

Corruption: When party / is invoked with (CORRUPT,/,sid) by Z/A, it sends

(CoRRUPTRETURN,/,s;d, historyy) to Z/A.

Figure 4.13: Blind signature protocol 7i£(es) in the (Jx : R S , ^ V 2 K , ^ P 2 K) -hybr id model

based on a lite-blind signature scheme 2MBS.{CRS, KG, Blind,Sign,SG.Vrf).

www.manaraa.com

125

Then we have 3S$, VZ, E X E C CRS' S,VZK' SPZK - EXEC 7 * 5 , , _ ^LLC

Proof. The proof is straightforward. Recall that 3SUVZ, E X E C ^ ^ * ^ = EXEC J s^z.

For such <Si, we have 3Si, VZ, EXEC c -7 — EXEC„ c ^

following: 352> VZ, E X E C > C R S ' ^ZK- ^ P Z K _ E X E C ^ 2

< €\. Therefore, we have the

< e\. Similarly, we have 3<Ss, VZ,

< ej + ••• + e4 . Note that J^ = J^g. We complete the

proof. •

E X E C ^ ' - ^ ' - ^ - E X E C ^ 5 . -
^ L (B S) . ^ Tld,i>5,Z

Now we turn to the proof of Theorem 4.6.1.

RU RS

Proof. In order to prove that E X E C ^ fZK' SPZK « E X E C ^ S
5 Z , we use the proof strat­

egy explored in Lemma 4.6.2. We develop several bridge hybrid worlds between the
n p

(-^CRS'-^vzK'-^PZK'"hybrid world and the ideal world, and define the ensemble of random
jr.

variables of Z's output of each bridge hybrid worlds as EXEC^' s z , i = 1,2,..., 5, where 7rd

is the dummy protocol same as that in the ideal world. Next we prove EXEC^0"5' z'

-.-rCRS>-rSVZK'"/SPZK

EXEC^1
 s z « ••• « EXEC^5

 s z ~ EXECy '^^ . In our sequence of games we introduce a

sequence of functionalities called "vault" which gradually becomes from dummy blind

signature functionality T\ into the ideal functionality J^s - T$ across a sequence of five

steps. At same time the corresponding simulator becomes from S\ into ideal world simu­

lator S - <S5. We also explicitly present the construction of S after the proof.

Note that we assume the underlying lite blind signature satisfies both lite-unforgeability

and lite-equivocality.

7-

EXEC ' c z- Here the vault T\, i.e. the dummy blind signature functionality, is between

the dummy parties S, U, V and the simulator Si; the vault T\ just forwards the mes-

www.manaraa.com

126

Dummy Blind Signature Functionality J\

Initialization is same as in Jj$s-

Key generation:

— Upon receiving (KEYGEN, S,sid) from party S, forward (LEAKKEYGEN, S,sid) to the adversary

S. Ignore future (K E Y G E N , S , . . .) .

— Upon receiving (INFLKEYGEN, S,sid, v) from S, record v in history 5 and memory, and output

(KEYGENRETURN, S,sid, v) to party S, where v is a deterministic algorithm. Ignore future

(INFLKEYGEN, S,...).

Signature generation:

— Upon receiving (SIGN, U,sid,(m,v')) from party U e U, record (m, v') in his tory^, and send

(LEAKSIGN, U,sid,(m,v')) to the adversary S. Ignore any future (SIGN, U,...).

— Upon receiving (lNFi.SiGN,S,sid,(U,/?)) from S, output (SiGNRETURN,S,s!'d,(L7,/J)) to party

S, and record (U,fi) in historys. Ignore future (lNFLSiGN,S,S!'d,(U,...)).

— Upon receiving (INFLSIGN, U,sid, {a, a)) from S, return (SIGNRETURN, U,sid, (a, a)) to party

U, and update history^ into (m,v',a,o). Ignore future (INFLSIGN, U,...).

Signature verification:

, — Upon receiving (VERIFY, V, sid, (m,o,v')) from party V eV, record {m,o,v') in historyy, and

send (LEAKVERIFY, V,sid, (m, a, v')) to the adversary <S. Ignore future (VERIFY, V,...).

— Upon receiving (INFLVERIFY, V,sid, (p) from <S, update historyy = (m,a,v',<p), and output

(VERIFYRETURN, V,sid,(p) to party V.

Corruption:

— Upon receiving (CORRUPT, P, sid) from the adversary S, mark P as corrupted.

Figure 4.14: Dummy blind signature functionality T\ in Lemma 4.6.2.

www.manaraa.com

127

sages between the dummy parties and S\, and at same time does some "basic" record­

ing. Please refer to Figure 4.14.

R R

The simulator <Sj simulates exactly the protocol 7T£(BS) in the (JX:RS> - ^ V Z K ' - ^ P Z K) "

hybrid model except that all inputs /outputs of the parties of protocol H£(BS) in the

(•̂ CRS- - ^ V Z K ' - ^ P Z K h y b r i d model are from/to the vault T\ instead of from/to Z.

Analysis:

Note that S\ restates the whole execution in the (Jx:Rs,-^vzK<-^pzK)~hyb"d w o r ^ -
v VKV Rs

So we have E X E C ^ 5 ' ^ ' ^ = EXECf1 „ 7.

EXEC 2
 s z . Here the vault T2, operating like the vault T\, forwards the messages between

the dummy parties and the simulator S2, and records some basic information. Fur­

thermore, Ti needs to deal with the "extraction" of m used by a corrupted U as that in

J^s: When party U is corrupted at some point, upon receiving (PATCH, U,sid,{m,v))

from S, if neither (m,v',a) in history^ nor (U,f}) in history 5 then set history^ <—

(m,v) otherwise ignore the message; ignore any future (PATCH,U,. . .) message.

<S2 is same as Si to simulate the whole (^ R s , J ^ V 2 K , ^ P 2 K) -hyb r id world except: in

the case that the user is corrupted, Z instructs A to send ((crs,vk,u),(m,Ci)) to -?^VzK

on the behalf of the corrupted user U; if ((crs,vk,u),(m,Ci)) e Ry, then S2 patches

(m,v) into T2, where algorithm v is obtained from the verification key vk.

Analysis:

This is a preparation step for the next step and the modification has no effect on Z's

www.manaraa.com

128

output. So EXEC :
 c -7 = EXEC 2

 c - .

E X E C ^ ^ . Here, we enable the functionality to be able to verify signatures as in J^s.

Now the vault J-j, is same as Ti except the signature verification stage is same as in

Jfts and the halting conditions (i)-(iv) are included.

Analysis:

Given that the underlying 2MBS is complete, the halting (ii)-(iv) will not be violated.

We still need to argue that the halting condition (i) will not be violated. First we note

that once the signer S is corrupted, then halting condition (i) will not be violated.

Next, we argue when the signer S is honest, the halting condition (i) will not be

violated given the underlying 2MBS is lite-unforgeable.

We define E as the event that in the Tj -hybrid world, the signer has generated the

verification algorithm v, and some party V is activated with a verification request

(VERIFY,V,sid,{m,a,v)), where v(m,a) = 1, and S is honest at this moment, and m

has not been signed. Note that event E can also be defined in the J^-hybrid world.

The only difference between the two worlds, i.e. the J^-hybrid world and the J^-

hybrid world, is the verification stage. If event E does not occur, then EXECn
2
 s z

J- J-
= EXEC^3

 s z . Based on the difference lemma (refer to [Sho04]), |EXECK
2
 s z -

EXEC^3
 s z\ < Pr[E]. Now we still need to argue that Pr[E] is negligible.

We now construct an algorithm B to output (k + 1) message-signature pairs after k

queries to the signing oracle. Here the algorithm B is supplied with a verification key

vk and is allowed to access to the signing oracle as defined in the lite-unforgeability

www.manaraa.com

129

model.

B runs a simulated S2 and a simulated T2. Note that now the simulator S2
 n a s t o

simulate party S without knowing the signing key sk.

— When Z activates some party S with input (KEYGEN, S,sid) with sid — (S,sid') for

some sid', B returns v to Z, where v = Vrf(crs,vk,-,-)- Note that vk is from the

input of B as described before.

— When the simulated S receives (SVZKPROVERETURN,S,sid,(U,(crs,vk',u))) from

•^VZK' *n t n e c a s e t n a t yk ~ V^> ^2 needs to simulate -7^PzK
 t o return (SPZKPROVE,

U,sid, (crs,vk,xx,s)) to Z. However S2 cannot produce s by itself because now S2

does not have the signing key sk. Note that S2 simulates ^ V Z K a n c^ (w 'C i) can

always be obtained from Z; then 52 queries the signing oracle with (m,Ci) and

obtains s.

p

— After finishing the above step, the simulator S2 lets ^SP
S
ZK return (SPZKPROVE, U,

sid,(crs,vk,\i,s)) to Z. In the case that the user is honest, the user will produce

signature a for m; B records such (m,a) pairs. In the case that the user is cor­

rupted, B computes {<J,^2) - 2MBS.SG(crs,vk,m,Ci,u,s) by randomly selecting

C2; B records (m, a).

— When Z activates some party V with input (VERIFY, V,sid,{m,a,\i')), B checks

whether (m,o) is a forgery, i.e. if v' = v, v'(m,a) = I, and m has never been queried

to the signing oracle. If (m,a) is a forgery, B outputs the pair and all recorded

pairs, say the number is k, and halts. If S2 is asked by Z to corrupt the signer

then B halts.

www.manaraa.com

130

Note that whenever the event E occurs, algorithm B can produce a successful one-

more forgery. Since the underlying 2MBS is lite-unforgeable, Pr[E] « 0, and we have

EXEC, c ^ ~ fc.Xfc.C- c <?.

EXEC^SiZ. Here we let the simulator S4 send the vault T± the pair (s, v) in the key gener-

def —'
ation where s - SG(crs,r,vk,sk,-)- The first difference between T^ and J^ is that the

key generation stage in T\ is same as that in .T^s-

The second difference is as follows. In the case that the signer is corrupted, inside £4,

when Z instructs A to send ((crs,vk,u,s), (sk,r\)) to -?gpzK
 o n behalf of the corrupted

def '—'

signer S, S± defines s = SG(crs,r,vk,sk,•) and patches s into ^4. Now T± deals with

the patching for s as in .T^g.

Analysis:

This is a preparation step for the next step and the modification has no effect on Z's

output. So EXECn
3
 s z = EXECn

4
 s z .

-p
EXEC^5

 s z . First, T5 include the halting condition (v). Second, when the vault J7^ receives

(SIGN, U,sid,(m,v')) from each dummy user U, T^ "blocks" m and sends (LEAKSIGN, U,

sid,v') to <S5; now S$ needs to simulate the user U without the real m (as opposed to

the real m used in £4). Note that the underlying 2MBS is lite-equivocal, so now <S5 can

take advantage of the algorithm Blind and s (i.e., SG) to finish the simulation. First <S5

computes (u,E,\) <— BV\nd(crs,vk,T), and once the user is corrupted, <S5 obtains from

T5 the value C which includes the randomness and the signed plaintext, and then <S5

http://fc.Xfc.C-

www.manaraa.com

131

computes the consistent internal states as in the J^-hybrid world by running Equiv

algorithm.

Analysis:

Given that the algorithm KG generates key pair (vk,sk) such that for each vk there

exists only a single sk, the halting condition (v) in T^ will not be violated. Futher-

more, notice that the J^-hybrid and ^ - h y b r i d worlds can be viewed as the oracles

0\ and OQ respectively in the lite-equivocality definition, and the underlying 2MBS

is lite-equivocal. We can conclude that the two worlds are computationally indistin­

guishable, i.e., EXEC 4
 c v ~ EXEC 5

 c v.

Note that the vault T$ is exactly the functionality J^s and S^ is same as 5 in the ideal

7-r, T T-T> c

world. So EXEC„ c v - EXEC 5
 c ?. Based on all discussions above, we have EXEC„ c 7 «

nd,otZ 714,0$,£ nd,o,Z-

EXEC C R S ' T Z K ' SPZK. D

4.7 Leaking ZK and its Application to Blind Signatures

4.7.1 Leaking SPZK Functionality and its Implementation

The efficiency of our UC blind signature protocol presented in the previous subsection can

be significantly improved. We find the SPZK functionality ^SPZK
 m t n e protocol can be

replaced by a much weaker Leaking SPZK functionality JispZK- The reason is that in the

UC blind signature security proof, the simulator knows the signing secret which means

the witness for ^ P Z K is known by the simulator, and thus no equivocation of dishonestly

simulated transcripts is ever necessary!

www.manaraa.com

132

We next give the description of functionality -TLSPZK
 m Figure 4.15.

Functionality J , S ' „ Z (,

-^LSPZK' parameterized by a binary relation R and a non-information oracle N, interacts with adversary

5 , and a single prover P and a set V of verifiers. The oracle N is instantiated as follows: upon a plaintext

w, N re turns (c,E,) where (c,£) <— Com(pk,w), Com is a commitment scheme with key pk. For each input

or message, the functionality verifies that sid = (P,sid') for some sid', and ignores it otherwise.

Proof:

— Upon receiving (SPZKPROVE,P,sid,(V,x,u>)) from the prover P, where V € V, obtain

(c,£) from M, forward (spzKLEAKPROvE,P,sid,(V,x,</>,c)) to the adversary S, and record

(V,x,w,c,£,) into historyp, where (p = 1 if (x,w) € R, and (p = 0 otherwise. Ignore future

(SPZKPROVE, P, sid, {V,...)).

— Upon receiving (SPZKINFLPROVE, V, sid). from the adversary S, ou tput

(SPZKPROVERETURN, V,sid, (V, x, (p)) to par ty V. Ignore future (SPZKINFLPROVE, V, sid).

Corruption:

— Upon receiving (CORRUPT, P, sid) from the adversary S, re turn S

(CORRUPTRETURN, P, sid, historyp).

After the successful corruption of P, if no output (SPZKPROVERETURN, V,sid,...) was re­

turned to par ty V yet, upon receiving (PATCH,P,sid,(V ,x ' ,w' ,c ' ,E ')) from the adversary

S, ou tput (SPZKPROVERETURN, V,sid,(x',(p')) to party V, where <p' = 1 if (x',w') € R and

c' = Com(pk,w';<;'), and cp' = 0 otherwise.

Figure 4.15: Leaking single-prover zero-knowledge functionality -TLSPZK-

An instantiation for leaking SPZK can be found in Figure 4.17: (1) it is based on an

extractable commitment EXC; (2) a Sigma protocol 3MZK - 3MZK.{Comt, Coins, Resp,Vrf,}

is used to show the consistency of the relation R and the extractable commitment, i.e. for

www.manaraa.com

133

crsExc
x

Verifier |

e <- 3MZK.Coins()

<j> «- 3MZK.Vrf((i, £) , a, e, z)

£ , a

I Prover

(EX) •*— EXC.Com(crsExc,i")
(a, ra) «- 3MZK.Comt«:r, £) , (w, 0)

2 <- 3MZK.Resp((a:,E), (w,£),ra,e)

<t>

Figure 4.16: A combination of a committing step with a Sigma protocol for relation R' =

{(crs,x,E), (w,C)| {x,w) € R AE = EXCCom(crsExc»^;C){ in the single-prover setting.

relation R' - {(crs,x,E),(iv,C)\ (x,w) £ RAE = EXC.Com(crsEXow;C)}, and a combination of

the Sigma protocol with the committing step of extractable commitment can be found in

Figure 4.16; (3) also, COM is an equivocal commitment schemes for applying Damgard

trick to the Sigma protocol.

Theorem 4.7.1. Given an extractable commitment scheme EXC, an equivocal commitment

scheme COM, and a non-erasure Sigma protocol 3MZK.{Comt, Coins, Resp,Vrf}; the Leaking

SPZK protocol 7T£(LSPZK) ' " Figure 4.17 securely realizes ^ S ' P Z K
 z n ^e -^CRS-hybrid model.

4.7.2 Alternative Implementation for Leaking SPZK

Here we present an alternative realization of ^TLSPZK with the potential of reducing com­

munication rounds complexity; please refer to Figure 4.18. In Section 4.8, by using this

protocol, we can save 2 moves of communication in our final concrete construction of blind

www.manaraa.com

134

Protocol H£(LSPZK) *n t ' l e -tRS'Hybrid World

CRS generation: Set crs <— (crsixocrsCOM) where crs^xc <~ EXC.CRS(1A) and crscoM <~ COM.CRS(lA).

Proof: Please refer to Figure 4.17 for a pictorial presentation. When party P is invoked with in­

put (spzKPROVE,P,sid((V,:»:,tt>)) from Z, it verifies that sid = (P,sid') for some sid'. If not,

then ignore the input. Else, if (x,w) £ R, it computes (£,C) <— EXC.Com(crsExC'u') a n d

(a,rfl) «— 3MZK.Comt((x,E),(w, C)) and (c,r) <— COM.Com(crscoM<fl)< a r)d then sends message

(SPZKI,sid, (x,E,c)) to party V (through A).

When party V is invoked with incoming SPZKJ message, it selects e <— 3MZK.Coins(), and sends

message (spzK2,sid,e) to party P (through .4).

When party P is invoked with incoming SPZK2 message, it computes z <—

3MZK.Resp((x,E),(w,£),ra,e), and sends message (SPZK3,sid,(a, r,z)) to party V (through

A).

When party V is invoked with incoming SPZK3 message, it verifies c = COM.Com(crscoM>a'ir) a n d

Vrf((x,£),a,e,2) = 1; if both hold, then it returns message (SPZKPROVERETURN, V,sid,(V,x,l)) to

Z. Otherwise return (SPZKPROVERETURN, V,sid,{V,x, 0)) to Z.

Corruption: When party P is invoked with incoming (CORRUPT, P, sid) by Z, it sends outgoing

(CoRRUPTRETURN,P,sid, historyp) to Z.

Figure 4.17: Leaking single-prover zero-knowledge protocol 7I£(LSPZK) ^or relation R in

the J^RS-hybrid world.

www.manaraa.com

signatures.

135

Protocol nyicv>7Y\ i n t n e JcRS'Hybrid World

CRS generation: Set crs <— (crs^xocrsCOM) where crs£xc *~ EXGCRS(1) and crscoM *~ COM.CRS(l^).

Proof: When party P is invoked with input (SPZKPROVE, P,sid, (V, x, w)) by Z, it verifies that sid =

(P,sid') for some sid'. If not, then ignore the input. Else, if (x,w) e R, it computes (£,C) <—

EXC.ComfcrsEXG1")' (fl»rfl) <"" 3MZK.Comt((x,E),(w,Q) and (c,r) <— COM.Com(crscoM>*>£>fl)< a n d

then sends message (spziq, sid,c) to par ty V (through A).

When party V is invoked with incoming SPZKJ message, it selects e <— 3MZK.Coins(), and sends

message (SPZK2, sid, e) to party P.

When par ty P is invoked with incoming SPZK2 message, it computes z <—

3MZK.Resp((x,£),(u>,C),rfl,e), and sends message (SPZK^,sid,{x,E,a,r,z)) to party V.

When party V is invoked with incoming SPZK3 message, it verifies c =

COM.Com(crscoM>fl;'') and 3MZK.Vrf((x,£),a,e,z) = 1; if both hold, then it re­

turns message (SPZKPROVERETURN, V.sid,{V,x, 1)) to Z. Otherwise returns message

(SPZKPROVERETURN, V, sid, {V, x, 0)) to Z.

Corruption: When party P is invoked with incoming (CORRUPT, P, sid) by Z, it sends outgoing

(CoRRUPTRETURN,P,si'<i, historyp) to Z.

Figure 4.18: Single-prover zero-knowledge protocol ^ISPZK) ^ o r r e i a t i ° n R i n t n e ^ C R S -

hybrid world.

Theorem 4.7.2. Given an extractable commitment scheme EXC, an equivocal commitment

scheme COM, and a non-erasure Sigma protocol 3MZK - 3MZK.{Comt,Coins,Resp,Vrf}, the

Leaking SPZK protocol n^<LSPZK) in Figure 4.18 securely realizes ^ S ' P Z K
 ! n tne Jv.KS~nybrid

www.manaraa.com

136

model.

4.8 Concrete Construction from Okamoto Signatures

In this section, we demonstrate how it is possible to derive an efficient UC blind signa­

ture instantiation based on Theorem 4.6.1 and the realization of its hybrid world with the

related ZK-functionalities. Note that we opt for minimizing the overall communication

complexity as opposed to round complexity. We need three ingredients: (1) an equivo-

cal lite blind signature scheme, (2) a UC-realization of the ideal functionality -7^VZK' (^) a

UC-realization of the ideal functionality - ^ P z K . Regarding (1) we will employ the lite blind

signature scheme of Figure 4.3. Regarding the two ZK functionalities we will follow the de­

sign strategy outlined in Section 4.6. Recall that in Figure 4.13, .Ry = {({crs,vk,\x), (m, Ci)) | u =

2MBS.Blind(crs,m;Ci)} and Rs = {((crs,vk,u,s),(sk,rj)) \ s = 2MBS.S\gn(crs,vk,xi,sk;n) Avk =

KG(crs,sk)}. Instantiating these relations for the protocol of Figure 4.3 we have that Ry =

{{(crs,X,W),(mtt,s))\W = g^tu[v\t}andRs = {((crs,X>W,Y>l,r)tx) \Y = (Wv[)™ AX = £}.

4.8.1 Efficient Instantiation for SVZK

Based on the SVZK protocol discussed in Section 4.6 (presented in Figure 4.5), and con-

P
sidering the underlying equivocal lite blind signature in Figure 4.3, we can realize ^ V ZK

efficiently. We instantiate the equivocal commitment COM with a hashed Pedersen com­

mitment [Ped91]. For the relation RVl it is easy to derive an efficient Sigma protocol ~ZRu

(the reader may refer to Figure 4.19). In the resulting construction, the value W that is

present within the statement proved by the user can play the role of an equivocal commit­

ment and thus we can take advantage of this fact and save somewhat in the communication

www.manaraa.com

137

y

$
alta2,a3 <- Z p

T-r; a; a2 «3

b\ <— «i + dmt

b2 <— a2 + dt

fe3 <— «3 + dsf

61

w

d

,b2,b3

s

d<^Zp

u

d^Zp

z,x

A

6X

S

x^zP

Z^Y*

X - 2 2

&x <- * + dx

Figure 4.19: T.Ru-protocol, where

Ru = {((crs, X,W),(m,t,s))\W =

Figure 4.20: E^s -protocol, where R$

{((crs,X,W,Y,l,r),x) \ Y = (Wv[)^ A X

complexity (this is reflected in the full protocol description that is presented in Figure 4.23

and Figure 4.24). The resulting protocol consists of 5 moves.

4.8.2 Efficient Instantiation for Leaking SPZK

Based on the Leaking SPZK protocol discussed before (presented in Figure 4.17) we in­

stantiate the extractable commitment by a Paillier encryption [Pai99]; an efficient Sigma

protocol JLRs for relation R$ is easy to be constructed (we present such protocol explicitly

in Figure 4.20); the required equivocal commitment that is needed to employ Damgard's

trick [DamOO] is instantiated with a hashed Pedersen commitment. The resulting protocol

has 3 moves.

www.manaraa.com

138

4.8.3 Communication Rounds Optimization

Based on the protocols put forth above, we can obtain an 8-move blind signature proto­

col by having the user make the first proof and the signer respond (refer to Figure 4.21).

Nevertheless, it is possible to achieve a 6-move protocol by carefully interleaving the com­

munication transcripts of the two sides (refer to Figure 4.22). This is possible by modifying

the UC protocol that realizes JLSPZK
 m t n e following manner: the signer (who plays the

role of the prover in Leaking SPZK) starts the proof prior to receiving the final communi­

cation of the user's protocol; this naturally puts the signer at risk as Theorem 4.6.1 does

not apply directly anymore (the signer starts the proof prior to the user completing her

part). We mitigate the problem by modifying the signer's ZK-protocol so that it leaks no

information in the first move; this enables an early start for the signer; the trick relies on

a commitment that is performed by the signer in the first step. The resulting protocol is

also a realization of ^LSPZK (and is presented in Figure 4.18). This trick may be of gen­

eral interest as it has the potential of reducing the number of rounds when two parties are

bilaterally proving to each other statements in zero-knowledge.

For the final 6-move blind signature protocol, please refer to Figure 4.23 and Fig­

ure 4.24.

Finally, we can obtain the corollary below:

Corollary 4.8.1. Under the DCR assumption, the DLOG assumption, and the 2SDH assump­

tion, and assuming existence of collision resistant hash function, there exists a blind signature

protocol that securely realizes J^$ in the J^^-hybrid model.

www.manaraa.com

139

U\ u\
2MBSI,SVZK1

<

SVZK2

SVZK3

SVZK4

SVZK5
<

2MBS2-SPZK!

SPZK2

'

SPZK3

Figure 4.21: 8-move BSIG pro­

tocol based on 2MBS, SVZK,

and SPZK.

2MBS1,SVZK1

SVZK2

SVZK3

SVZK4,SPZK']

SVZK5,SPZK2

SPZK'3
>

Figure 4.22: 6-move BSIG protocol based on

2MBS, SVZK, and SPZK. Here 2MBS2 is commit­

ted inside SPZK'J, and will be opened until SPZK3;

except this difference, SPZK'J and SPZKJ are same

as SPZKJ, SPZK3 in Figure 4.21.

4.8.4 Description of the Concrete UC Blind Signature

Based on the design in Section 4.8, we obtain a concrete UC blind signature protocol de­

scribed in Figure 4.23 and Figure 4.24. Now we describe the CRS generation, the choice of

parameters and also communication efficiency.

Common reference string generation. The common reference string crs - {n,g;K;p,gi,g2,Gi,

<&2><&T> e,il),U2,v2;Q,G,g,h.2,h3,'H}. Here (n,g) is a public key for Paillier encryption; Kis a

public key for an equivocal commitment; (p,gi,g2,Gi,G2,Gj, e, ip,u2,v2) is a part of public

key for Okamoto signature; (Q, G,g ,h 2 ,h 3 , H) is Pedersen commitments public key. The

parameters generated as follows.

www.manaraa.com

140

vk = {X = gx
2)

sk = (x)

crs = (n,g;K;p,gii,g2,Gi,G2,GT,e,ip,U2,V2;Q,G,g.h2,h3,H)

vk = (X=g$)

m 6 Z„

K2 <- Z*

CUW

(KmMEg.Ci)

K l A 2 * n 2 ; W A r n

C] ^ K ^ i ^ i) " 2 modn 3

U ^ Z p j W ^ g f ' l ^ l f

K ^ K^K2 mod n2

6 <- (m(mod p) + f2K + (s(mod p)22K

Ae,B0 I Z*„; Ee <- X0(A0)n mod n2

a i £ ± [0 , 2 A ° + A " + ^] , 1 = 1,2,3

5 ^ a ! +«22'c + a322'c

£ o ^ j ; f l (B (,) n m o d n 2

TA7
 a l fl2 fl3

f 2 <- 2Q;O) 2 <- H(£0 , W)

C2«-g<^hf Ci = ?K x i (^!) n modn 3

d u ^ (0 4 } A u

$ r <— Z p s.t. x + r 2 0 mod p

^ i ± [0 , 2 A o + A s + ^]

Y < - (W v |) ^ , Z < - Y *

£x «- g*(^x)n m od n2

E x ^ g * (B x) n m o d n 2

,<34-.ZQ;a>3«-W(Y,/,r,Z,X,EI)

C3 <- g ^ 3 h f

ffo be continued in Figure 4.24)

Figure 4.23: Blind signature generation protocol (part 1)

www.manaraa.com

141

(continued from Figure 4.23)

(Ex,C}),du

w2 <- H(Ee, W); C2 =
? g ^ h f

b ,€ ? ±[0,2 A o + A t ; + ^ + 1] , i = 1,2,3

K<^KiK2 mod n2

»7 ^ f c ! +b22K + i 32 2 K

K1(Fe)
n =? Ee(Ee)

du mod n2

<5* <- * + ^s • x,

Fx «- Bx(Ax)
ds m od n

(b1,b2,b3,Fs>,(£e,W^2>,ds

(6x,Fx),(Y,lr,Z,X,Ex,H3)

b\ <— aj + d\j • (mt mod p)

b2<- a2 + dy -t

2>3 <— a3 + djj • (st mod p)

Fe^Be(Ae)
du modn

> w3«-W(Y,i,r,Z,X,£x)

C 3 = ? g - 3 h «

£x e? 2:*2;5X e? +[o,2x°+Xs+£t>+1]

g*x =• XXds

/ , ^ 2 p ; C - Y 7 7 m ° d p

a «— X' gl ; ft <— s + j mod p

<y<-<e,a,/J,Vi,V2>

Vrf(crs,vk,m,a) = • 1

output (jw,ff)

Figure 4.24: Blind signature generation protocol (part 2).

www.manaraa.com

142

First, we generate parameters for Paillier encryption: let p and q be random primes

for which it holds p * q, |p| = |q| and gcd(pq , (p - l) (q - 1)) = 1; let n <— pq, and g <—

(1 + n); set (n,g) as a Paillier public key, and (p, q) as the X-trapdoor. Second, randomly

select TK <— Zn and compute K «— (TK)n mod n3; set K as an E-key, and TK as the E-

trapdoor. Third, let (Gi,G2) be bilinear groups as defined in Section 2.6. Randomly

select g2 <- G2 , rU2>^v2 <- Z p , compute u2 <- g2
U2,v2 <- g2

2, and set gx *- \p{g2), ux <^-

i/»(«2) and V\ <— i/»(v2). Set (p,g\,g2,&\,G2, GT,e,xp,u2,v2) as the public information, and

(ru ,TV) as the trapdoor. Fourth, we generate parameters for a Pedersen-like [Ped91]

commitment scheme over an elliptic curve group: let G = (g) be a cyclic elliptic curve

$

group of prime order Q; select Th2,T,,3 «— ZQ and compute h 2 <— gTh2, h 3 <— gTh3; se­

lect H from a collision-resistent hash family H, i.e. H <— Ti, such that H : {0,1}* —»

2 Q ; set (Q,g ,h 2 , h 3 ,G , H) as public information, and TJ,2,TJ,3 as the trapdoor. Finally, set

CRS = {n,g;K;p,g1 ,g2 ,G1 ,G2 ,G7,e, ip,u2,v2;Q,G,g,h2,h3,H}, and discard the correspond­

ing trapdoors {p,q;TK;T„2,T„2;Th2,Th3}.

Choice of parameter lengths. Let the length of each parameter p, n, Q be £p, £n, £Q respec­

tively. In the protocol, dv <p, d$ < p, i.e. XJJ < £p, As < €p, and K > A0 + Xu + £p + 3, £n > 3K.

The parameters should be selected so that the following requirements: (i) The 2SDH as­

sumption holds over the bilinear group parameter (p,gi,g2,G\,G2,Gj-, e,ip,u2,v2), (ii) The

DLOG assumption holds over the elliptic curve cyclic group G, (iii) The DCR assumption

holds over Z*'2. Based on the present state of the art with respect to the solvability of the

above problems, a possible choice of the parameters is for example £p - 171 bits, £n = 1024

bits, £Q - 171 bits. Notice that we should avoid using elliptic curves that have small p + 1

www.manaraa.com

143

divisors and p — 1 divisors apart from 2, which suffer from a recent attack on SDH-related

assumptions by Cheon [Che06].

Communication efficiency. We count the bits of six flows for generating a UC blind sig­

nature as:

flowl: 3£n+£p

flow2: 2£n

flow3: 2£n+£n + 2£n + £Q

fiow4: 2en+eQ + \v

flow5: 3(A0 + Xu + £p + 1) + £n + 2£n + £p + £Q + As

flow6: {\0 + \s+£p + l) + £n + 5£p + 2£n + £Q

Based on the parameters: X0 - Xv = X$ = 80bits, £p - 171bits, £n = 1024bits, £Q - 171bits,

K = 341bits, and each element in Gj is with length of £p, we can compute the whole com­

munication which is about 22.3 Kbits, i.e. less than 3 Kbytes.

Signature length. The length of signature a - (c, a, /S, Vj, V2) is: £p + 6 • £p + £p + £p + 6 • £p -

\5£p = 2565bits, i.e. about 2.6 Kbits. Here using the families of curves in [BLS04], we use

group <Gj where each element is 171bits and group G2 where each element 6 x 171bits.

www.manaraa.com

144

BIBLIOGRAPHY

[AHO10] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on elements
in bilinear groups for modular protocol design. In Cryptology ePrint Archive: Report
2010/133,2010. Available at h t tp : / / ep r in t . i ac r .o rg /2010 /133 .

[AO09] Masayuki Abe and Miyako Ohkubo. A framework for universally composable non-
committing blind signatures. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of
Lecture Notes in Computer Science, pages 435-450. Springer, 2009.

[Bea91] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems toler­
ating a faulty minority. /. Cryptology, 4(2):75-122, 1991.

[Bea97] Donald Beaver. Plug and play encryption. In Burton S. Kaliski Jr., editor, CRYPTO,
volume 1294 of Lecture Notes in Computer Science, pages 75-89. Springer, 1997.

[Bea98] Donald Beaver. Adaptively secure oblivious transfer. In Kazuo Ohta and Dingyi Pei,
editors, ASIACRYPT, volume 1514 of Lecture Notes in Computer Science, pages 300-314.
Springer, 1998.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. /.
Cryptology, 17(4):297-319, 2004.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The one-more-RSA-inversion problems and the security of Chaum's blind signature
scheme. /. Cryptology, 16(3):185-215, 2003. Preliminary version appears in Financial
Cryptography 2001.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC, volume 2567 of Lecture Notes in Computer Science, pages 31-46. Springer, 2003.

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive simulatability
(RSIM) framework for asynchronous systems. Inf. Comput., 205(12):1685-1720, 2007.

[CanOO] Ran Canetti. Security and composition of multiparty cryptographic protocols. /. Cryp­
tology, 13(1): 143-202, 2000.

[CanOl] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136-145. IEEE Computer Society, 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
CSFW, pages 219-235. IEEE Computer Society, 2004. Full version at h t tp : / / ep r in t .
iacr.org/2003/239/.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro­
tocols. In Cryptology ePrint Archive, Report 2000/067, December 2005. Latest version
at h t tp : / / ep r in t . i ac r .o rg /2000 /067 / .

[Can07] Ran Canetti. Obtaining universally compoable security: Towards the bare bones of
trust. In ASIACRYPT, pages 88-112, 2007. http://eprint.iacr.org/2007/475.

http://eprint.iacr.org/2010/133
http://iacr.org/2003/239/
http://eprint.iacr.org/2000/067/
http://eprint.iacr.org/2007/475

www.manaraa.com

145

[CCK+05] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira,
and Roberto Segala. Using probabilistic i/o automata to analyze an oblivious transfer
protocol. In Cryptology ePrint Archive: Report 2005/452, 2005. Available at h t t p :
/ / e p r i n t . i a c r . o r g / 2 0 0 5 / 4 5 2 .

[CCK+07a] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira,
and Roberto Segala. Task-structured probabilistic I /O automata. In MIT CSAIL Tech­
nical Report MIT-CSAIL-TR-2006-060, June 2007. Available at h t t p : / / p e o p l e . c s a l l .
m i t . e d u / l c h e u n g / t a s k - p i o a / t a s k - P I 0 A - T R . p d f .

[CCK+07b] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and Olivier Pereira.
Compositional security for task-PIOAs. In CSF, pages 125-139. IEEE Computer Soci­
ety, 2007.

Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A. Lynch, Olivier
Pereira, and Roberto Segala. Analyzing security protocols using t ime-bounded task-
PIOAs. Discrete Event Dynamic Systems, 18(1):111-159, 2008.

Ran Canetti, Ling Cheung, Nancy Lynch, and Olivier Pereira. On the role of scheduling
in simulation-based security. In 7th International Workshop on Issues in the Theory of
Security (WITS'07), 2007.

Ran Canetti, Ivan Damgard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. Adap­
tive versus non-adaptive security of multi-party protocols. /. Cryptology, 17(3):153-
207, 2004.

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-
box constructions of adaptively secure protocols. In Omer Reingold, editor, TCC, vol­
ume 5444 of Lecture Notes in Computer Science, pages 387-402. Springer, 2009.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture
Notes in Computer Science, pages 61-85. Springer, 2007.

[CDS94] Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO,
volume 839 of Lecture Notes in Computer Science, pages 174-187. Springer, 1994.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi­
party computation. In STOC, pages 639-648, 1996.

David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, CRYPTO, pages 199-203. Plemum Press, 1982.

Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In EURO-
CRYPT, volume 4004 of Lecture Notes in Computer Science, pages 1-11. Springer, 2006.

Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture
Notes in Computer Science, pages 337-351. Springer, 2002.

Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eli Biham, ed­
itor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 68-86.
Springer, 2003.

[CCK+08]

[CCLP07]

[CDD+04]

[Cha82]

[Che06]

[CK02]

[CKL03]

http://mit.edu/lcheung/task-pioa/

www.manaraa.com

146

[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signatures
without random oracles. In Carlo Blundo and Stelvio Cimato, editors, SCN, volume
3352 of Lecture Notes in Computer Science, pages 134-148. Springer, 2004.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In STOC, pages 494-503. ACM,
2002. Full version at h t tp : / / ep r ln t . l ac r .o rg /2002 /140 / .

[CNS07] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious trans­
fer. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer
Science, pages 573-590. Springer, 2007.

[CocOl] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Bahram Honary, editor, IMA Int. Conf., volume 2260 of Lecture Notes in Computer
Science, pages 360-363. Springer, 2001.

[DamOO] Ivan Damgard. Efficient concurrent zero-knowledge in the auxiliary string model.
In EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages 418-430.
Springer, 2000.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM }.
Comput., 30(2):391-437, 2000. Preliminary version appears at STOC 1991.

[DG03] Ivan Damgard and Jens Groth. Non-interactive and reusable non-malleable com­
mitment schemes. In STOC, pages 426-437. ACM, 2003. Full version at h t tp :
/ /www.brlcs.dk/-jg/.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Inform. Theory, pages 644-654, 1976.

[DKM+04] Anupam Datta, Ralf Kiisters, John C. Mitchell, Ajith Ramanathan, and Vitaly
Shmatikov. Unifying equivalence-based definitions of protocol security. In 2004 IFIP
WG 1.7, ACM SIGPLAN and GI FoMSESS Workshop on Issues in the Theory of Security
(WITS 2004), 2004.

[DM00] Yevgeniy Dodis and Silvio Micali. Parallel reducibility for information-theoretically
secure computation. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of Lecture
Notes in Computer Science, pages 74-92. Springer, 2000.

[DN00] Ivan Damgard and Jesper Buus Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. In Mihir Bellare, editor, CRYPTO,
volume 1880 of Lecture Notes in Computer Science, pages 432-450. Springer, 2000.

[DN02] Ivan Damgard and Jesper Buus Nielsen. Perfect hiding and perfect binding univer­
sally composable commitment schemes with constant expansion factor. In Moti Yung,
editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 581-596.
Springer, 2002. Full version at http://www.brics.dk/RS/01/41/.

[DN03] Ivan Damgard and Jesper Buus Nielsen. Universally composable efficient multi­
party computation from threshold homomorphic encryption. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 247-264. Springer,
2003.

[DNO08] Ivan Damgard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal uni­
versally composable oblivious transfer. In Pil Joong Lee and Jung Hee Cheon, editors,
ICISC, volume 5461 of Lecture Notes in Computer Science, pages 318-335. Springer,
2008. Available at h t tp : / / ep r in t . i ac r .o rg /2008 /220 / .

http://eprlnt.lacr.org/2002/140/
http://www.brlcs.dk/-jg/
http://www.brics.dk/RS/01/41/
http://eprint.iacr

www.manaraa.com

147

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference
string model. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in
Computer Science, pages 60-77. Springer, 2006. Full version at h t tp : //www. f i s ch l in .
del.

[GKZ10] Juan Garay, Aggelos Kiayias, and Hong-Sheng Zhou. A framework for the sound
specification of cryptographic tasks. In CSF, 2010. To appear. Available at h t tp :
/ / epr in t . i ac r .o rg /2008/132/ .

[GL90] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in pres­
ence of immoral majority. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO
1990, volume 537 of Lecture Notes in Computer Science, pages 77-93. Springer, 1990.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme se­
cure against adaptive chosen-message attacks. SIAMJ. Comput., 17(2):281-308, 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218-229.
ACM, 1987.

[GMY04] Juan A. Garay, Philip MacKenzie, and Ke Yang. Efficient and universally composable
committed oblivious transfer and applications. In Moni Naor, editor, TCC, volume
2951 of Lecture Notes in Computer Science, pages 297-316. Springer, 2004.

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge pro­
tocols using signatures. /. Cryptology, 19(2):169-209, 2006. Preliminary version ap­
pears in Eurocrypt 2003.

[GWZ09] Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing
encryption and efficient adaptively secure oblivious transfer. In Shai Halevi, editor,
CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 505-523. Springer,
2009.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in
two rounds. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in
Computer Science, pages 111-129. Springer, 2007.

[HKKL07] Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-
secure blind signatures without random oracles or setup assumptions. In Salil P. Vad-
han, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 323-341.
Springer, 2007.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures
in perfect multiparty computation. /. Cryptology, 13(l):31-60, 2000.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes
in Computer Science, pages 572-591. Springer, 2008.

[JL097] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures
(extended abstract). In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of Lecture
Notes in Computer Science, pages 150-164. Springer, 1997.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on
committed inputs. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes
in Computer Science, pages 97-114. Springer, 2007.

http://iacr.org/2008/

www.manaraa.com

148

[KDMR08] Ralf Kiisters, Anupam Datta, John C. Mitchell, and Ajith Ramanathan. On the rela­
tionships between notions of simulation-based security. /. Cryptology, 21(4):492-546,
2008.

[Kim04] Kwangjo Kim. Lessons from Internet voting during 2002 FIFA WorldCup Ko-
rea/Japan(TM). In DIMACS Workshop on Electronic Voting - Theory and Practice, 2004.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer
Science, pages 335-354. Springer, 2004.

[Kiis06] Ralf Kiisters. Simulation-based security with inexhaustible interactive Turing ma­
chines. In CSFW, pages 309-320. IEEE Computer Society, 2006.

[KZ06] Aggelos Kiayias and Hong-Sheng Zhou. Concurrent blind signatures without ran­
dom oracles. In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of
Lecture Notes in Computer Science, pages 49-62. Springer, 2006. Long version at
h t t p : / / e p r i n t . i a c r . o r g / 2 0 0 5 / 4 3 5 / .

[KZ07] Aggelos Kiayias and Hong-Sheng Zhou. Trading static for adaptive security in univer­
sally composable zero-knowledge. In Lars Arge, Christian Cachin, Tomasz Jurdzinski,
and Andrzej Tarlecki, editors, ICALP, volume 4596 of Lecture Notes in Computer Sci­
ence, pages 316-327. Springer, 2007.

[KZ08] Aggelos Kiayias and Hong-Sheng Zhou. Equivocal blind signatures and adaptive uc-
security. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer Science,
pages 340-355. Springer, 2008.

[Lin03] Yehuda Lindell. Bounded-concurrent secure two-party computation without setup
assumptions. In STOC, pages 683-692. ACM, 2003. Full version at h t t p : / /www.cs.
b i u . a c . i l / - l i n d e l l / .

[Lin08] Andrew Y. Lindell. Efficient fully-simulatable oblivious transfer. In Tal Malkin, edi­
tor, CT-RSA, volume 4964 of Lecture Notes in Computer Science, pages 52-70. Springer,
2008.

[Lin09] Andrew Y. Lindell. Adaptively secure two-party computation with erasures. In Marc
Fischlin, editor, CT-RSA, volume 5473 of Lecture Notes in Computer Science, pages 117—
132. Springer, 2009. Available at h t t p : / / e p r i n t . i a c r . o r g / 2 0 0 9 / 0 3 1 / .

[LMMS98] Patrick Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. A probabilis­
tic poly-time framework for protocol analysis. In ACM Conference on Computer and
Communications Security, pages 112-121, 1998.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party compu­
tation in the presence of malicious adversaries. In Moni Naor, editor, EUROCRYPT,
volume 4515 of Lecture Notes in Computer Science, pages 52-78. Springer, 2007.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for concurrent security: universal composability from stand-alone non-
malleability. In Michael Mitzenmacher, editor, STOC, pages 179-188. ACM, 2009.

[LSV03] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Compositionality for proba­
bilistic automata. In Roberto M. Amadio and Denis Lugiez, editors, CONCUR, volume
2761 of Lecture Notes in Computer Science, pages 204-222. Springer, 2003.

http://eprint.iacr.org/2005/435/
http://www.cs
http://biu.ac.il/-lindell/
http://eprint
http://iacr.org/2009/031

www.manaraa.com

149

[LZ09] Yehuda Lindell and Hila Zarosim. Adaptive zero-knowledge proofs and adaptively
secure oblivious transfer. In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes
in Computer Science, pages 183-201. Springer, 2009.

[MMS03] Paulo Mateus, John C. Mitchell, and Andre Scedrov. Composition of cryptographic
protocols in a probabilistic polynomial-time process calculus. In Roberto M. Amadio
and Denis Lugiez, editors, CONCUR, volume 2761 of Lecture Notes in Computer Science,
pages 323-345. Springer, 2003.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In Joan Feigenbaum,
editor, CRYPTO 1991, volume 576 of Lecture Notes in Computer Science, pages 392-404.
Springer, 1991. Long version at h t t p : / /www. l c s . m i t . edu / p u b l i c a t I o n s / pubs /pdf /
MIT-LCS-TR-511.pdf.

[MRST06] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A proba­
bilistic polynomial-time process calculus for the analysis of cryptographic protocols.
Theor. Comput. Sci., 353(1-3):118-164, 2006.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Moti Yung, editor, CRYPTO, volume
2442 of Lecture Notes in Computer Science, pages 111-126. Springer, 2002.

[Nie03] Jesper Buus Nielsen. On protocol security in the cryptographic model. Dissertation
Series DS-03-8, BRICS, 2003. h t t p : / /www.b r i c s . dk /DS /03 /8Z .

[Nie05] Jesper Buus Nielsen. Universally composable zero-knowledge proof of membership.
Manuscript, 2005.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random or­
acles. In Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in
Computer Science, pages 80-99. Springer, 2006. Long version at h t t p : / / e p r l n t . l a c r .
o rg /2006 /102 / .

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in Com­
puter Science, pages 223-238. Springer, 1999.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in Computer
Science, pages 129-140. Springer, 1991.

[PS96] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In
Kwangjo Kim and Tsutomu Matsumoto, editors, ASIACRYPT, volume 1163 of Lecture
Notes in Computer Science, pages 252-265. Springer, 1996.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal
composability without trusted setup. In STOC, pages 242-251. ACM, 2004.

[PS05] Manoj Prabhakaran and Amit Sahai. Relaxing environmental security: Monitored
functionalities and client-server computation. In Joe Kilian, editor, TCC, volume 3378
of Lecture Notes in Computer Science, pages 104-127. Springer, 2005.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO, volume 5157 of
Lecture Notes in Computer Science, pages 554-571. Springer, 2008. Available at h t t p :
/ / w w w . c c . g a t e c h . e d u / - c p e l k e r t / .

http://www.brics.dk/DS/03/8Z
http://www.cc.gatech.edu/-cpelkert/

www.manaraa.com

150

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of
secure reactive systems. In ACM Conference on Computer and Communications Security,
pages 245-254, 2000.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In IEEE Symposium on Security and
Privacy, 2001.

[Sho04] Victor Shoup. Sequences of games: A tool for taming complexity in security proofs.
In Cryptology ePrint Archive: Report 2004/332, 2004. Available at h t t p : / / s h o u p . n e t /
p a p e r s / .

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In FOCS 1982,
pages 80-91 . IEEE, 1982.

